Spaces:
No application file
No application file
import torch | |
from torch.utils import data | |
import numpy as np | |
from os.path import join as pjoin | |
import random | |
import codecs as cs | |
from tqdm import tqdm | |
import utils.paramUtil as paramUtil | |
from torch.utils.data._utils.collate import default_collate | |
def collate_fn(batch): | |
batch.sort(key=lambda x: x[3], reverse=True) | |
return default_collate(batch) | |
'''For use of training text-2-motion generative model''' | |
class Text2MotionDataset(data.Dataset): | |
def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4): | |
self.max_length = 20 | |
self.pointer = 0 | |
self.dataset_name = dataset_name | |
self.is_test = is_test | |
self.max_text_len = max_text_len | |
self.unit_length = unit_length | |
self.w_vectorizer = w_vectorizer | |
if dataset_name == 't2m': | |
self.data_root = './dataset/HumanML3D' | |
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
self.text_dir = pjoin(self.data_root, 'texts') | |
self.joints_num = 22 | |
radius = 4 | |
fps = 20 | |
self.max_motion_length = 196 | |
dim_pose = 263 | |
kinematic_chain = paramUtil.t2m_kinematic_chain | |
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
elif dataset_name == 'kit': | |
self.data_root = './dataset/KIT-ML' | |
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
self.text_dir = pjoin(self.data_root, 'texts') | |
self.joints_num = 21 | |
radius = 240 * 8 | |
fps = 12.5 | |
dim_pose = 251 | |
self.max_motion_length = 196 | |
kinematic_chain = paramUtil.kit_kinematic_chain | |
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
mean = np.load(pjoin(self.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(self.meta_dir, 'std.npy')) | |
if is_test: | |
split_file = pjoin(self.data_root, 'test.txt') | |
else: | |
split_file = pjoin(self.data_root, 'val.txt') | |
min_motion_len = 40 if self.dataset_name =='t2m' else 24 | |
# min_motion_len = 64 | |
joints_num = self.joints_num | |
data_dict = {} | |
id_list = [] | |
with cs.open(split_file, 'r') as f: | |
for line in f.readlines(): | |
id_list.append(line.strip()) | |
new_name_list = [] | |
length_list = [] | |
for name in tqdm(id_list): | |
try: | |
motion = np.load(pjoin(self.motion_dir, name + '.npy')) | |
if (len(motion)) < min_motion_len or (len(motion) >= 200): | |
continue | |
text_data = [] | |
flag = False | |
with cs.open(pjoin(self.text_dir, name + '.txt')) as f: | |
for line in f.readlines(): | |
text_dict = {} | |
line_split = line.strip().split('#') | |
caption = line_split[0] | |
tokens = line_split[1].split(' ') | |
f_tag = float(line_split[2]) | |
to_tag = float(line_split[3]) | |
f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
text_dict['caption'] = caption | |
text_dict['tokens'] = tokens | |
if f_tag == 0.0 and to_tag == 0.0: | |
flag = True | |
text_data.append(text_dict) | |
else: | |
try: | |
n_motion = motion[int(f_tag*fps) : int(to_tag*fps)] | |
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): | |
continue | |
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
while new_name in data_dict: | |
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
data_dict[new_name] = {'motion': n_motion, | |
'length': len(n_motion), | |
'text':[text_dict]} | |
new_name_list.append(new_name) | |
length_list.append(len(n_motion)) | |
except: | |
print(line_split) | |
print(line_split[2], line_split[3], f_tag, to_tag, name) | |
# break | |
if flag: | |
data_dict[name] = {'motion': motion, | |
'length': len(motion), | |
'text': text_data} | |
new_name_list.append(name) | |
length_list.append(len(motion)) | |
except Exception as e: | |
# print(e) | |
pass | |
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) | |
self.mean = mean | |
self.std = std | |
self.length_arr = np.array(length_list) | |
self.data_dict = data_dict | |
self.name_list = name_list | |
self.reset_max_len(self.max_length) | |
def reset_max_len(self, length): | |
assert length <= self.max_motion_length | |
self.pointer = np.searchsorted(self.length_arr, length) | |
print("Pointer Pointing at %d"%self.pointer) | |
self.max_length = length | |
def inv_transform(self, data): | |
return data * self.std + self.mean | |
def forward_transform(self, data): | |
return (data - self.mean) / self.std | |
def __len__(self): | |
return len(self.data_dict) - self.pointer | |
def __getitem__(self, item): | |
idx = self.pointer + item | |
name = self.name_list[idx] | |
data = self.data_dict[name] | |
# data = self.data_dict[self.name_list[idx]] | |
motion, m_length, text_list = data['motion'], data['length'], data['text'] | |
# Randomly select a caption | |
text_data = random.choice(text_list) | |
caption, tokens = text_data['caption'], text_data['tokens'] | |
if len(tokens) < self.max_text_len: | |
# pad with "unk" | |
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len) | |
else: | |
# crop | |
tokens = tokens[:self.max_text_len] | |
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
sent_len = len(tokens) | |
pos_one_hots = [] | |
word_embeddings = [] | |
for token in tokens: | |
word_emb, pos_oh = self.w_vectorizer[token] | |
pos_one_hots.append(pos_oh[None, :]) | |
word_embeddings.append(word_emb[None, :]) | |
pos_one_hots = np.concatenate(pos_one_hots, axis=0) | |
word_embeddings = np.concatenate(word_embeddings, axis=0) | |
if self.unit_length < 10: | |
coin2 = np.random.choice(['single', 'single', 'double']) | |
else: | |
coin2 = 'single' | |
if coin2 == 'double': | |
m_length = (m_length // self.unit_length - 1) * self.unit_length | |
elif coin2 == 'single': | |
m_length = (m_length // self.unit_length) * self.unit_length | |
idx = random.randint(0, len(motion) - m_length) | |
motion = motion[idx:idx+m_length] | |
"Z Normalization" | |
motion = (motion - self.mean) / self.std | |
if m_length < self.max_motion_length: | |
motion = np.concatenate([motion, | |
np.zeros((self.max_motion_length - m_length, motion.shape[1])) | |
], axis=0) | |
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name | |
def DATALoader(dataset_name, is_test, | |
batch_size, w_vectorizer, | |
num_workers = 8, unit_length = 4) : | |
val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length), | |
batch_size, | |
shuffle = True, | |
num_workers=num_workers, | |
collate_fn=collate_fn, | |
drop_last = True) | |
return val_loader | |
def cycle(iterable): | |
while True: | |
for x in iterable: | |
yield x | |