# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImg2ImgPipeline, AutoencoderKL, PNDMScheduler, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_numpy, nightly, require_torch_gpu, torch_device, ) enable_full_determinism() class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5006, ) return RobertaSeriesModelWithTransformation(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_stable_diffusion_img2img_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") tokenizer.model_max_length = 77 init_image = self.dummy_image.to(device) init_image = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk alt_pipe = AltDiffusionImg2ImgPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, image_encoder=None, ) alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=True) alt_pipe = alt_pipe.to(device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = alt_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = alt_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=init_image, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_img2img_fp16(self): """Test that stable diffusion img2img works with fp16""" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") tokenizer.model_max_length = 77 init_image = self.dummy_image.to(torch_device) # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk alt_pipe = AltDiffusionImg2ImgPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, image_encoder=None, ) alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False) alt_pipe = alt_pipe.to(torch_device) alt_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = alt_pipe( [prompt], generator=generator, num_inference_steps=2, output_type="np", image=init_image, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_img2img_pipeline_multiple_of_8(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 init_image = init_image.resize((760, 504)) model_id = "BAAI/AltDiffusion" pipe = AltDiffusionImg2ImgPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np", ) image = output.images[0] image_slice = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @nightly @require_torch_gpu class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_img2img_pipeline_default(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) model_id = "BAAI/AltDiffusion" pipe = AltDiffusionImg2ImgPipeline.from_pretrained( model_id, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "A fantasy landscape, trending on artstation" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2