import torch.nn as nn from .encdec import Encoder, Decoder from .quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset class VQVAE_251(nn.Module): def __init__(self, args, nb_code=1024, code_dim=512, output_emb_width=512, down_t=3, stride_t=2, width=512, depth=3, dilation_growth_rate=3, activation='relu', norm=None): super().__init__() self.code_dim = code_dim self.num_code = nb_code self.quant = args.quantizer self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) if args.quantizer == "ema_reset": self.quantizer = QuantizeEMAReset(nb_code, code_dim, args) elif args.quantizer == "orig": self.quantizer = Quantizer(nb_code, code_dim, 1.0) elif args.quantizer == "ema": self.quantizer = QuantizeEMA(nb_code, code_dim, args) elif args.quantizer == "reset": self.quantizer = QuantizeReset(nb_code, code_dim, args) def preprocess(self, x): # (bs, T, Jx3) -> (bs, Jx3, T) x = x.permute(0,2,1).float() return x def postprocess(self, x): # (bs, Jx3, T) -> (bs, T, Jx3) x = x.permute(0,2,1) return x def encode(self, x): N, T, _ = x.shape x_in = self.preprocess(x) x_encoder = self.encoder(x_in) x_encoder = self.postprocess(x_encoder) x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C) code_idx = self.quantizer.quantize(x_encoder) code_idx = code_idx.view(N, -1) return code_idx def forward(self, x): x_in = self.preprocess(x) # Encode x_encoder = self.encoder(x_in) ## quantization x_quantized, loss, perplexity = self.quantizer(x_encoder) ## decoder x_decoder = self.decoder(x_quantized) x_out = self.postprocess(x_decoder) return x_out, loss, perplexity def forward_decoder(self, x): x_d = self.quantizer.dequantize(x) x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous() # decoder x_decoder = self.decoder(x_d) x_out = self.postprocess(x_decoder) return x_out class HumanVQVAE(nn.Module): def __init__(self, args, nb_code=512, code_dim=512, output_emb_width=512, down_t=3, stride_t=2, width=512, depth=3, dilation_growth_rate=3, activation='relu', norm=None): super().__init__() self.nb_joints = 21 if args.dataname == 'kit' else 22 self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) def encode(self, x): b, t, c = x.size() quants = self.vqvae.encode(x) # (N, T) return quants def forward(self, x): x_out, loss, perplexity = self.vqvae(x) return x_out, loss, perplexity def forward_decoder(self, x): x_out = self.vqvae.forward_decoder(x) return x_out