File size: 8,090 Bytes
9016314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import logging
from collections import defaultdict
import numpy as np
import pickle
import tensorflow as tf
from pprint import pformat

from .utils import visualize, plot_functions, plot_img_functions

class Runner(object):
    def __init__(self, args, model):
        self.args = args
        self.sess = model.sess
        self.model = model

    def set_dataset(self, trainset, validset, testset):
        self.trainset = trainset
        self.validset = validset
        self.testset = testset

    def train(self):
        train_metrics = []
        num_batches = self.trainset.num_batches
        self.trainset.initialize()
        for i in range(num_batches):
            batch = self.trainset.next_batch()
            metric, summ, step, _ = self.model.execute(
                [self.model.metric, self.model.summ_op, 
                self.model.global_step, self.model.train_op], 
                batch)
            if (self.args.summ_freq > 0) and (i % self.args.summ_freq == 0):
                self.model.writer.add_summary(summ, step)
            train_metrics.append(metric)
        train_metrics = np.concatenate(train_metrics, axis=0)

        return np.mean(train_metrics)

    def valid(self):
        valid_metrics = []
        num_batches = self.validset.num_batches
        self.validset.initialize()
        for i in range(num_batches):
            batch = self.validset.next_batch()
            metric = self.model.execute(self.model.metric, batch)
            valid_metrics.append(metric)
        valid_metrics = np.concatenate(valid_metrics, axis=0)

        return np.mean(valid_metrics)

    def valid_mse(self):
        valid_mse = []
        num_batches = self.validset.num_batches
        self.validset.initialize()
        for i in range(num_batches):
            batch = self.validset.next_batch()
            sample = self.model.execute(self.model.sample, batch)
            mse = np.mean(np.sum(np.square(sample-batch['x']), axis=tuple(range(2,sample.ndim))), axis=1)
            valid_mse.append(mse)
        valid_mse = np.concatenate(valid_mse, axis=0)

        return np.mean(valid_mse)

    def valid_chd(self):
        pass

    def valid_emd(self):
        pass

    def test(self):
        test_metrics = []
        num_batches = self.testset.num_batches
        self.testset.initialize()
        for i in range(num_batches):
            batch = self.testset.next_batch()
            metric = self.model.execute(self.model.metric, batch)
            test_metrics.append(metric)
        test_metrics = np.concatenate(test_metrics)

        return np.mean(test_metrics)

    def test_mse(self):
        test_mse = []
        num_batches = self.testset.num_batches
        self.testset.initialize()
        for i in range(num_batches):
            batch = self.testset.next_batch()
            sample = self.model.execute(self.model.sample, batch)
            mse = np.mean(np.sum(np.square(sample-batch['x']), axis=tuple(range(2,sample.ndim))), axis=1)
            test_mse.append(mse)
        test_mse = np.concatenate(test_mse, axis=0)

        return np.mean(test_mse)

    def test_chd(self):
        pass

    def test_emd(self):
        pass

    def run(self):
        logging.info('==== start training ====')
        best_train_metric = -np.inf
        best_valid_metric = -np.inf
        best_test_metric = -np.inf
        for epoch in range(self.args.epochs):
            train_metric = self.train()
            valid_metric = self.valid()
            test_metric = self.test()
            # save
            if train_metric > best_train_metric:
                best_train_metric = train_metric
            if valid_metric > best_valid_metric:
                best_valid_metric = valid_metric
                self.model.save()
            if test_metric > best_test_metric:
                best_test_metric = test_metric
            logging.info("Epoch %d, train: %.4f/%.4f, valid: %.4f/%.4f test: %.4f/%.4f" %
                 (epoch, train_metric, best_train_metric, 
                 valid_metric, best_valid_metric,
                 test_metric, best_test_metric))
            # evaluate
            if epoch % 100 == 0:
                logging.info('==== start evaluating ====')
                self.evaluate(folder=f'{epoch}', load=False)
            self.model.save('last')

        # finish
        logging.info('==== start evaluating ====')
        self.evaluate(load=True)

    def evaluate(self, folder='test', load=True):
        save_dir = f'{self.args.exp_dir}/evaluate/{folder}/'
        os.makedirs(save_dir, exist_ok=True)
        if load: self.model.load()
        
        # # likelihood
        if 'likel' in self.args.eval_metrics:
            valid_likel = self.valid()
            test_likel = self.test()
            logging.info(f"likelihood => valid: {valid_likel} test: {test_likel}")

        # # mse
        if 'mse' in self.args.eval_metrics:
            valid_mse = self.valid_mse()
            test_mse = self.test_mse()
            logging.info(f"mse => valid: {valid_mse} test: {test_mse}")

        if 'chd' in self.args.eval_metrics:
            valid_chd = self.valid_chd()
            test_chd = self.test_chd()
            logging.info(f"chd => valid: {valid_chd} test: {test_chd}")

        if 'emd' in self.args.eval_metrics:
            valid_emd = self.valid_emd()
            test_emd = self.test_emd()
            logging.info(f"emd => valid: {valid_emd} test: {test_emd}")

        if 'sam' in self.args.eval_metrics:
            # train set
            self.trainset.initialize()
            batch = self.trainset.next_batch()
            train_sample = self.model.execute(self.model.sample, batch)
            visualize(train_sample, batch, f'{save_dir}/train_sam')

            # valid set
            self.validset.initialize()
            batch = self.validset.next_batch()
            valid_sample = self.model.execute(self.model.sample, batch)
            visualize(valid_sample, batch, f'{save_dir}/valid_sam')

            # test set
            self.testset.initialize()
            batch = self.testset.next_batch()
            test_sample = self.model.execute(self.model.sample, batch)
            visualize(test_sample, batch, f'{save_dir}/test_sam')

        if 'fns' in self.args.eval_metrics:
            # train set
            self.trainset.initialize()
            batch = self.trainset.next_batch()
            train_mean, train_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_functions(train_mean, train_std, batch, f'{save_dir}/train_fn')

            # valid set
            self.validset.initialize()
            batch = self.validset.next_batch()
            valid_mean, valid_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_functions(valid_mean, valid_std, batch, f'{save_dir}/valid_fn')

            # test set
            self.testset.initialize()
            batch = self.testset.next_batch()
            test_mean, test_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_functions(test_mean, test_std, batch, f'{save_dir}/test_fn')

        if 'imfns' in self.args.eval_metrics:
            # train set
            self.trainset.initialize()
            batch = self.trainset.next_batch()
            train_mean, train_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_img_functions(train_mean, train_std, batch, f'{save_dir}/train_fn')

            # valid set
            self.validset.initialize()
            batch = self.validset.next_batch()
            valid_mean, valid_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_img_functions(valid_mean, valid_std, batch, f'{save_dir}/valid_fn')

            # test set
            self.testset.initialize()
            batch = self.testset.next_batch()
            test_mean, test_std = self.model.execute([self.model.mean, self.model.std], batch)
            plot_img_functions(test_mean, test_std, batch, f'{save_dir}/test_fn')