NeuCoSVC-2 / Phoneme_Hallucinator_v2 /scripts /speech_expansion_ins.py
kevinwang676's picture
Upload 93 files
9016314 verified
raw
history blame
6.32 kB
import os
import sys
import time
p = os.path.split(os.path.dirname(os.path.abspath(__file__)))[0]
sys.path.append(p)
import argparse
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_v2_behavior()
from utils.hparams import HParams
from models import get_model
import torch
set_size = 200
threshold = 100
def fast_cosine_dist(source_feats, matching_pool):
source_norms = torch.norm(source_feats, p=2, dim=-1)
matching_norms = torch.norm(matching_pool, p=2, dim=-1)
dotprod = -torch.cdist(source_feats[None], matching_pool[None], p=2)[0]**2 + source_norms[:, None]**2 + matching_norms[None]**2
dotprod /= 2
dists = 1 - ( dotprod / (source_norms[:, None] * matching_norms[None]) )
return dists
def evaluate(batch, model):
sample = model.execute(model.sample, batch)
return sample
def prematch(path, expanded):
uttrs_from_same_spk = sorted(list(path.parent.rglob('**/*.pt')))
uttrs_from_same_spk.remove(path)
candidates = []
for each in uttrs_from_same_spk:
candidates.append(torch.load(each))
candidates = torch.cat(candidates,0)
candidates = torch.cat([candidates, torch.tensor(expanded)], 0)
source_feats = torch.load(path)
source_feats=source_feats.to(torch.float32)
dists = fast_cosine_dist(source_feats.cpu(), candidates.cpu()).cpu()
best = dists.topk(k=args.topk, dim=-1, largest=False) # (src_len, 4)
out_feats = candidates[best.indices].mean(dim=1) # (N, dim)
return out_feats
def single_expand(path, model, num_samples, seed=1234, out_path=None):
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
# test
matching_set = torch.load(path, map_location=torch.device('cpu')).numpy()
matching_set = matching_set / 10
matching_size = matching_set.shape[0]
new_samples = []
cur_num_samples = 0
while cur_num_samples < num_samples:
batch = dict()
if matching_size < threshold:
num_new_samples = set_size - matching_size
padded_data = np.zeros((num_new_samples, matching_set.shape[1]))
batch['b'] = np.concatenate([np.ones_like(matching_set), np.zeros_like(padded_data)], 0)[None, ...]
batch['x'] = np.concatenate([matching_set, padded_data], axis=0)[None, ...]
batch['m'] = np.ones_like(batch['b'])
sample = evaluate(batch, model)
new_sample = sample[0,matching_size:] * 10
cur_num_samples += num_new_samples
else:
num_new_samples = set_size - threshold
ind = np.random.choice(matching_size, threshold, replace=False)
padded_data = np.zeros((num_new_samples, matching_set.shape[1]))
obs_data = matching_set[ind]
batch['x'] = np.concatenate([obs_data, padded_data], 0)[None, ...]
batch['b'] = np.concatenate([np.ones_like(obs_data), np.zeros_like(padded_data)], 0)[None, ...]
batch['m'] = np.ones_like(batch['b'])
sample = evaluate(batch, model)
new_sample = sample[0,num_new_samples:,:] * 10
cur_num_samples += num_new_samples
new_samples.append(new_sample)
new_samples = np.concatenate(new_samples, 0)
new_samples = new_samples[:num_samples]
if out_path:
os.makedirs(os.path.dirname(out_path), exist_ok=True)
np.save(out_path, new_samples)
return new_samples
def single_expand_fast(path):
# test
matching_set = torch.load(path).cpu().numpy()
matching_set = matching_set / 10
matching_size = matching_set.shape[0]
batch = dict()
if matching_size < threshold:
num_new_samples = set_size - matching_size
else:
num_new_samples = set_size - threshold
batch_size = int(np.ceil(args.num_samples // num_new_samples))
if matching_size < threshold:
padded_data = np.zeros((num_new_samples, matching_set.shape[1]))
batch['b'] = np.concatenate([np.ones_like(matching_set), np.zeros_like(padded_data)], 0)[None, ...]
batch['x'] = np.concatenate([matching_set, padded_data], axis=0)[None, ...]
batch['b'] = np.tile(batch['b'], (batch_size, 1, 1))
batch['x'] = np.tile(batch['b'], (batch_size, 1, 1))
batch['m'] = np.ones_like(batch['b'])
sample = evaluate(batch, model)
new_samples = sample[:,matching_size:, :] * 10
new_samples = new_samples.reshape((-1, new_samples.shape[-1]))
else:
padded_data = np.zeros((num_new_samples, matching_set.shape[1]))
batch['x'] = []
for i in range(batch_size):
ind = np.random.choice(matching_size, threshold, replace=False)
obs_data = matching_set[ind]
batch['x'].append(np.concatenate([obs_data, padded_data], 0)[None, ...])
batch['x'] = np.concatenate(batch['x'], 0)
batch['b'] = np.concatenate([np.ones_like(obs_data), np.zeros_like(padded_data)], 0)[None, ...]
batch['b'] = np.tile(batch['b'], (batch_size, 1, 1))
batch['m'] = np.ones_like(batch['b'])
sample = evaluate(batch, model)
new_samples = sample[:,matching_size:, :] * 10
new_samples = new_samples.reshape((-1, new_samples.shape[-1]))
new_samples = new_samples[:args.num_samples]
return new_samples
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg_file', type=str)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--num_samples', type=int, default=100)
parser.add_argument('--path', type=str, default="matching_set.pt")
parser.add_argument('--out_path', type=str, default="expanded_set.pt")
parser.add_argument('--topk', type=int, default=4)
args = parser.parse_args()
params = HParams(args.cfg_file)
# modify config
t0 = time.time()
# model
model = get_model(params)
model.load()
t1 = time.time()
print(f"{t1-t0:.2f}s to load the model")
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
path = args.path
if path.endswith(".pt"):
t0 = time.time()
expanded = single_expand(path, model, args.num_samples, args.seed, args.out_path)
t1 = time.time()
print(f"{t1-t0:.2f}s to expand the set")