kevinwang676 commited on
Commit
9c0a6bd
·
1 Parent(s): 4554aec

Update vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. vc_infer_pipeline.py +425 -363
vc_infer_pipeline.py CHANGED
@@ -1,363 +1,425 @@
1
- import numpy as np, parselmouth, torch, pdb
2
- from time import time as ttime
3
- import torch.nn.functional as F
4
- import scipy.signal as signal
5
- import pyworld, os, traceback, faiss,librosa
6
- from scipy import signal
7
- from functools import lru_cache
8
-
9
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
10
-
11
- input_audio_path2wav={}
12
- @lru_cache
13
- def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
14
- audio=input_audio_path2wav[input_audio_path]
15
- f0, t = pyworld.harvest(
16
- audio,
17
- fs=fs,
18
- f0_ceil=f0max,
19
- f0_floor=f0min,
20
- frame_period=frame_period,
21
- )
22
- f0 = pyworld.stonemask(audio, f0, t, fs)
23
- return f0
24
-
25
- def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
26
- # print(data1.max(),data2.max())
27
- rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
28
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
29
- rms1=torch.from_numpy(rms1)
30
- rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
31
- rms2=torch.from_numpy(rms2)
32
- rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
33
- rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
34
- data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
35
- return data2
36
-
37
- class VC(object):
38
- def __init__(self, tgt_sr, config):
39
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
40
- config.x_pad,
41
- config.x_query,
42
- config.x_center,
43
- config.x_max,
44
- config.is_half,
45
- )
46
- self.sr = 16000 # hubert输入采样率
47
- self.window = 160 # 每帧点数
48
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
49
- self.t_pad_tgt = tgt_sr * self.x_pad
50
- self.t_pad2 = self.t_pad * 2
51
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
52
- self.t_center = self.sr * self.x_center # 查询切点位置
53
- self.t_max = self.sr * self.x_max # 免查询时长阈值
54
- self.device = config.device
55
-
56
- def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
57
- global input_audio_path2wav
58
- time_step = self.window / self.sr * 1000
59
- f0_min = 50
60
- f0_max = 1100
61
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
62
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
63
- if f0_method == "pm":
64
- f0 = (
65
- parselmouth.Sound(x, self.sr)
66
- .to_pitch_ac(
67
- time_step=time_step / 1000,
68
- voicing_threshold=0.6,
69
- pitch_floor=f0_min,
70
- pitch_ceiling=f0_max,
71
- )
72
- .selected_array["frequency"]
73
- )
74
- pad_size = (p_len - len(f0) + 1) // 2
75
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
76
- f0 = np.pad(
77
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
78
- )
79
- elif f0_method == "harvest":
80
- input_audio_path2wav[input_audio_path]=x.astype(np.double)
81
- f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
82
- if(filter_radius>2):
83
- f0 = signal.medfilt(f0, 3)
84
- f0 *= pow(2, f0_up_key / 12)
85
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
86
- tf0 = self.sr // self.window # 每秒f0点数
87
- if inp_f0 is not None:
88
- delta_t = np.round(
89
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
90
- ).astype("int16")
91
- replace_f0 = np.interp(
92
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
93
- )
94
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
95
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
96
- :shape
97
- ]
98
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
99
- f0bak = f0.copy()
100
- f0_mel = 1127 * np.log(1 + f0 / 700)
101
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
102
- f0_mel_max - f0_mel_min
103
- ) + 1
104
- f0_mel[f0_mel <= 1] = 1
105
- f0_mel[f0_mel > 255] = 255
106
- f0_coarse = np.rint(f0_mel).astype(int)
107
- return f0_coarse, f0bak # 1-0
108
-
109
- def vc(
110
- self,
111
- model,
112
- net_g,
113
- sid,
114
- audio0,
115
- pitch,
116
- pitchf,
117
- times,
118
- index,
119
- big_npy,
120
- index_rate,
121
- version,
122
- ): # ,file_index,file_big_npy
123
- feats = torch.from_numpy(audio0)
124
- if self.is_half:
125
- feats = feats.half()
126
- else:
127
- feats = feats.float()
128
- if feats.dim() == 2: # double channels
129
- feats = feats.mean(-1)
130
- assert feats.dim() == 1, feats.dim()
131
- feats = feats.view(1, -1)
132
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
133
-
134
- inputs = {
135
- "source": feats.to(self.device),
136
- "padding_mask": padding_mask,
137
- "output_layer": 9 if version == "v1" else 12,
138
- }
139
- t0 = ttime()
140
- with torch.no_grad():
141
- logits = model.extract_features(**inputs)
142
- feats = model.final_proj(logits[0])if version=="v1"else logits[0]
143
-
144
- if (
145
- isinstance(index, type(None)) == False
146
- and isinstance(big_npy, type(None)) == False
147
- and index_rate != 0
148
- ):
149
- npy = feats[0].cpu().numpy()
150
- if self.is_half:
151
- npy = npy.astype("float32")
152
-
153
- # _, I = index.search(npy, 1)
154
- # npy = big_npy[I.squeeze()]
155
-
156
- score, ix = index.search(npy, k=8)
157
- weight = np.square(1 / score)
158
- weight /= weight.sum(axis=1, keepdims=True)
159
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
160
-
161
- if self.is_half:
162
- npy = npy.astype("float16")
163
- feats = (
164
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
165
- + (1 - index_rate) * feats
166
- )
167
-
168
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
169
- t1 = ttime()
170
- p_len = audio0.shape[0] // self.window
171
- if feats.shape[1] < p_len:
172
- p_len = feats.shape[1]
173
- if pitch != None and pitchf != None:
174
- pitch = pitch[:, :p_len]
175
- pitchf = pitchf[:, :p_len]
176
- p_len = torch.tensor([p_len], device=self.device).long()
177
- with torch.no_grad():
178
- if pitch != None and pitchf != None:
179
- audio1 = (
180
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
181
- .data.cpu()
182
- .float()
183
- .numpy()
184
- )
185
- else:
186
- audio1 = (
187
- (net_g.infer(feats, p_len, sid)[0][0, 0])
188
- .data.cpu()
189
- .float()
190
- .numpy()
191
- )
192
- del feats, p_len, padding_mask
193
- if torch.cuda.is_available():
194
- torch.cuda.empty_cache()
195
- t2 = ttime()
196
- times[0] += t1 - t0
197
- times[2] += t2 - t1
198
- return audio1
199
-
200
- def pipeline(
201
- self,
202
- model,
203
- net_g,
204
- sid,
205
- audio,
206
- input_audio_path,
207
- times,
208
- f0_up_key,
209
- f0_method,
210
- file_index,
211
- # file_big_npy,
212
- index_rate,
213
- if_f0,
214
- filter_radius,
215
- tgt_sr,
216
- resample_sr,
217
- rms_mix_rate,
218
- version,
219
- f0_file=None,
220
- ):
221
- if (
222
- file_index != ""
223
- # and file_big_npy != ""
224
- # and os.path.exists(file_big_npy) == True
225
- and os.path.exists(file_index) == True
226
- and index_rate != 0
227
- ):
228
- try:
229
- index = faiss.read_index(file_index)
230
- # big_npy = np.load(file_big_npy)
231
- big_npy = index.reconstruct_n(0, index.ntotal)
232
- except:
233
- traceback.print_exc()
234
- index = big_npy = None
235
- else:
236
- index = big_npy = None
237
- audio = signal.filtfilt(bh, ah, audio)
238
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
239
- opt_ts = []
240
- if audio_pad.shape[0] > self.t_max:
241
- audio_sum = np.zeros_like(audio)
242
- for i in range(self.window):
243
- audio_sum += audio_pad[i : i - self.window]
244
- for t in range(self.t_center, audio.shape[0], self.t_center):
245
- opt_ts.append(
246
- t
247
- - self.t_query
248
- + np.where(
249
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
250
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
251
- )[0][0]
252
- )
253
- s = 0
254
- audio_opt = []
255
- t = None
256
- t1 = ttime()
257
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
258
- p_len = audio_pad.shape[0] // self.window
259
- inp_f0 = None
260
- if hasattr(f0_file, "name") == True:
261
- try:
262
- with open(f0_file.name, "r") as f:
263
- lines = f.read().strip("\n").split("\n")
264
- inp_f0 = []
265
- for line in lines:
266
- inp_f0.append([float(i) for i in line.split(",")])
267
- inp_f0 = np.array(inp_f0, dtype="float32")
268
- except:
269
- traceback.print_exc()
270
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
271
- pitch, pitchf = None, None
272
- if if_f0 == 1:
273
- pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
274
- pitch = pitch[:p_len]
275
- pitchf = pitchf[:p_len]
276
- if self.device == "mps":
277
- pitchf = pitchf.astype(np.float32)
278
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
279
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
280
- t2 = ttime()
281
- times[1] += t2 - t1
282
- for t in opt_ts:
283
- t = t // self.window * self.window
284
- if if_f0 == 1:
285
- audio_opt.append(
286
- self.vc(
287
- model,
288
- net_g,
289
- sid,
290
- audio_pad[s : t + self.t_pad2 + self.window],
291
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
292
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
293
- times,
294
- index,
295
- big_npy,
296
- index_rate,
297
- version,
298
- )[self.t_pad_tgt : -self.t_pad_tgt]
299
- )
300
- else:
301
- audio_opt.append(
302
- self.vc(
303
- model,
304
- net_g,
305
- sid,
306
- audio_pad[s : t + self.t_pad2 + self.window],
307
- None,
308
- None,
309
- times,
310
- index,
311
- big_npy,
312
- index_rate,
313
- version,
314
- )[self.t_pad_tgt : -self.t_pad_tgt]
315
- )
316
- s = t
317
- if if_f0 == 1:
318
- audio_opt.append(
319
- self.vc(
320
- model,
321
- net_g,
322
- sid,
323
- audio_pad[t:],
324
- pitch[:, t // self.window :] if t is not None else pitch,
325
- pitchf[:, t // self.window :] if t is not None else pitchf,
326
- times,
327
- index,
328
- big_npy,
329
- index_rate,
330
- version,
331
- )[self.t_pad_tgt : -self.t_pad_tgt]
332
- )
333
- else:
334
- audio_opt.append(
335
- self.vc(
336
- model,
337
- net_g,
338
- sid,
339
- audio_pad[t:],
340
- None,
341
- None,
342
- times,
343
- index,
344
- big_npy,
345
- index_rate,
346
- version,
347
- )[self.t_pad_tgt : -self.t_pad_tgt]
348
- )
349
- audio_opt = np.concatenate(audio_opt)
350
- if(rms_mix_rate!=1):
351
- audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
352
- if(resample_sr>=16000 and tgt_sr!=resample_sr):
353
- audio_opt = librosa.resample(
354
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
355
- )
356
- audio_max=np.abs(audio_opt).max()/0.99
357
- max_int16=32768
358
- if(audio_max>1):max_int16/=audio_max
359
- audio_opt=(audio_opt * max_int16).astype(np.int16)
360
- del pitch, pitchf, sid
361
- if torch.cuda.is_available():
362
- torch.cuda.empty_cache()
363
- return audio_opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb, sys, os
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
+ from scipy import signal
7
+ from functools import lru_cache
8
+
9
+ now_dir = os.getcwd()
10
+ sys.path.append(now_dir)
11
+
12
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
+
14
+ input_audio_path2wav = {}
15
+
16
+
17
+ @lru_cache
18
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
19
+ audio = input_audio_path2wav[input_audio_path]
20
+ f0, t = pyworld.harvest(
21
+ audio,
22
+ fs=fs,
23
+ f0_ceil=f0max,
24
+ f0_floor=f0min,
25
+ frame_period=frame_period,
26
+ )
27
+ f0 = pyworld.stonemask(audio, f0, t, fs)
28
+ return f0
29
+
30
+
31
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
32
+ # print(data1.max(),data2.max())
33
+ rms1 = librosa.feature.rms(
34
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
35
+ ) # 每半秒一个点
36
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
37
+ rms1 = torch.from_numpy(rms1)
38
+ rms1 = F.interpolate(
39
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
40
+ ).squeeze()
41
+ rms2 = torch.from_numpy(rms2)
42
+ rms2 = F.interpolate(
43
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
44
+ ).squeeze()
45
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
46
+ data2 *= (
47
+ torch.pow(rms1, torch.tensor(1 - rate))
48
+ * torch.pow(rms2, torch.tensor(rate - 1))
49
+ ).numpy()
50
+ return data2
51
+
52
+
53
+ class VC(object):
54
+ def __init__(self, tgt_sr, config):
55
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
56
+ config.x_pad,
57
+ config.x_query,
58
+ config.x_center,
59
+ config.x_max,
60
+ config.is_half,
61
+ )
62
+ self.sr = 16000 # hubert输入采样率
63
+ self.window = 160 # 每帧点数
64
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
65
+ self.t_pad_tgt = tgt_sr * self.x_pad
66
+ self.t_pad2 = self.t_pad * 2
67
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
68
+ self.t_center = self.sr * self.x_center # 查询切点位置
69
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
70
+ self.device = config.device
71
+
72
+ def get_f0(
73
+ self,
74
+ input_audio_path,
75
+ x,
76
+ p_len,
77
+ f0_up_key,
78
+ f0_method,
79
+ filter_radius,
80
+ inp_f0=None,
81
+ ):
82
+ global input_audio_path2wav
83
+ time_step = self.window / self.sr * 1000
84
+ f0_min = 50
85
+ f0_max = 1100
86
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
87
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
88
+ if f0_method == "pm":
89
+ f0 = (
90
+ parselmouth.Sound(x, self.sr)
91
+ .to_pitch_ac(
92
+ time_step=time_step / 1000,
93
+ voicing_threshold=0.6,
94
+ pitch_floor=f0_min,
95
+ pitch_ceiling=f0_max,
96
+ )
97
+ .selected_array["frequency"]
98
+ )
99
+ pad_size = (p_len - len(f0) + 1) // 2
100
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
101
+ f0 = np.pad(
102
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
103
+ )
104
+ elif f0_method == "harvest":
105
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
106
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
107
+ if filter_radius > 2:
108
+ f0 = signal.medfilt(f0, 3)
109
+ elif f0_method == "crepe":
110
+ model = "full"
111
+ # Pick a batch size that doesn't cause memory errors on your gpu
112
+ batch_size = 512
113
+ # Compute pitch using first gpu
114
+ audio = torch.tensor(np.copy(x))[None].float()
115
+ f0, pd = torchcrepe.predict(
116
+ audio,
117
+ self.sr,
118
+ self.window,
119
+ f0_min,
120
+ f0_max,
121
+ model,
122
+ batch_size=batch_size,
123
+ device=self.device,
124
+ return_periodicity=True,
125
+ )
126
+ pd = torchcrepe.filter.median(pd, 3)
127
+ f0 = torchcrepe.filter.mean(f0, 3)
128
+ f0[pd < 0.1] = 0
129
+ f0 = f0[0].cpu().numpy()
130
+ elif f0_method == "rmvpe":
131
+ if hasattr(self, "model_rmvpe") == False:
132
+ from rmvpe import RMVPE
133
+
134
+ print("loading rmvpe model")
135
+ self.model_rmvpe = RMVPE(
136
+ "rmvpe.pt", is_half=self.is_half, device=self.device
137
+ )
138
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
+ f0 *= pow(2, f0_up_key / 12)
140
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
+ tf0 = self.sr // self.window # 每秒f0点数
142
+ if inp_f0 is not None:
143
+ delta_t = np.round(
144
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
145
+ ).astype("int16")
146
+ replace_f0 = np.interp(
147
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
148
+ )
149
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
150
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
151
+ :shape
152
+ ]
153
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
154
+ f0bak = f0.copy()
155
+ f0_mel = 1127 * np.log(1 + f0 / 700)
156
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
157
+ f0_mel_max - f0_mel_min
158
+ ) + 1
159
+ f0_mel[f0_mel <= 1] = 1
160
+ f0_mel[f0_mel > 255] = 255
161
+ f0_coarse = np.rint(f0_mel).astype(np.int)
162
+ return f0_coarse, f0bak # 1-0
163
+
164
+ def vc(
165
+ self,
166
+ model,
167
+ net_g,
168
+ sid,
169
+ audio0,
170
+ pitch,
171
+ pitchf,
172
+ times,
173
+ index,
174
+ big_npy,
175
+ index_rate,
176
+ version,
177
+ ): # ,file_index,file_big_npy
178
+ feats = torch.from_numpy(audio0)
179
+ if self.is_half:
180
+ feats = feats.half()
181
+ else:
182
+ feats = feats.float()
183
+ if feats.dim() == 2: # double channels
184
+ feats = feats.mean(-1)
185
+ assert feats.dim() == 1, feats.dim()
186
+ feats = feats.view(1, -1)
187
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
188
+
189
+ inputs = {
190
+ "source": feats.to(self.device),
191
+ "padding_mask": padding_mask,
192
+ "output_layer": 9 if version == "v1" else 12,
193
+ }
194
+ t0 = ttime()
195
+ with torch.no_grad():
196
+ logits = model.extract_features(**inputs)
197
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
198
+ if (
199
+ isinstance(index, type(None)) == False
200
+ and isinstance(big_npy, type(None)) == False
201
+ and index_rate != 0
202
+ ):
203
+ npy = feats[0].cpu().numpy()
204
+ if self.is_half:
205
+ npy = npy.astype("float32")
206
+
207
+ # _, I = index.search(npy, 1)
208
+ # npy = big_npy[I.squeeze()]
209
+
210
+ score, ix = index.search(npy, k=8)
211
+ weight = np.square(1 / score)
212
+ weight /= weight.sum(axis=1, keepdims=True)
213
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
214
+
215
+ if self.is_half:
216
+ npy = npy.astype("float16")
217
+ feats = (
218
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
219
+ + (1 - index_rate) * feats
220
+ )
221
+
222
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
223
+
224
+ t1 = ttime()
225
+ p_len = audio0.shape[0] // self.window
226
+ if feats.shape[1] < p_len:
227
+ p_len = feats.shape[1]
228
+ if pitch != None and pitchf != None:
229
+ pitch = pitch[:, :p_len]
230
+ pitchf = pitchf[:, :p_len]
231
+
232
+ p_len = torch.tensor([p_len], device=self.device).long()
233
+ with torch.no_grad():
234
+ if pitch != None and pitchf != None:
235
+ audio1 = (
236
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
237
+ .data.cpu()
238
+ .float()
239
+ .numpy()
240
+ )
241
+ else:
242
+ audio1 = (
243
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
244
+ )
245
+ del feats, p_len, padding_mask
246
+ if torch.cuda.is_available():
247
+ torch.cuda.empty_cache()
248
+ t2 = ttime()
249
+ times[0] += t1 - t0
250
+ times[2] += t2 - t1
251
+ return audio1
252
+
253
+ def pipeline(
254
+ self,
255
+ model,
256
+ net_g,
257
+ sid,
258
+ audio,
259
+ input_audio_path,
260
+ times,
261
+ f0_up_key,
262
+ f0_method,
263
+ file_index,
264
+ # file_big_npy,
265
+ index_rate,
266
+ if_f0,
267
+ filter_radius,
268
+ tgt_sr,
269
+ resample_sr,
270
+ rms_mix_rate,
271
+ version,
272
+ f0_file=None,
273
+ ):
274
+ if (
275
+ file_index != ""
276
+ # and file_big_npy != ""
277
+ # and os.path.exists(file_big_npy) == True
278
+ and os.path.exists(file_index) == True
279
+ and index_rate != 0
280
+ ):
281
+ try:
282
+ index = faiss.read_index(file_index)
283
+ # big_npy = np.load(file_big_npy)
284
+ big_npy = index.reconstruct_n(0, index.ntotal)
285
+ except:
286
+ traceback.print_exc()
287
+ index = big_npy = None
288
+ else:
289
+ index = big_npy = None
290
+ audio = signal.filtfilt(bh, ah, audio)
291
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
292
+ opt_ts = []
293
+ if audio_pad.shape[0] > self.t_max:
294
+ audio_sum = np.zeros_like(audio)
295
+ for i in range(self.window):
296
+ audio_sum += audio_pad[i : i - self.window]
297
+ for t in range(self.t_center, audio.shape[0], self.t_center):
298
+ opt_ts.append(
299
+ t
300
+ - self.t_query
301
+ + np.where(
302
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
303
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
304
+ )[0][0]
305
+ )
306
+ s = 0
307
+ audio_opt = []
308
+ t = None
309
+ t1 = ttime()
310
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
311
+ p_len = audio_pad.shape[0] // self.window
312
+ inp_f0 = None
313
+ if hasattr(f0_file, "name") == True:
314
+ try:
315
+ with open(f0_file.name, "r") as f:
316
+ lines = f.read().strip("\n").split("\n")
317
+ inp_f0 = []
318
+ for line in lines:
319
+ inp_f0.append([float(i) for i in line.split(",")])
320
+ inp_f0 = np.array(inp_f0, dtype="float32")
321
+ except:
322
+ traceback.print_exc()
323
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
324
+ pitch, pitchf = None, None
325
+ if if_f0 == 1:
326
+ pitch, pitchf = self.get_f0(
327
+ input_audio_path,
328
+ audio_pad,
329
+ p_len,
330
+ f0_up_key,
331
+ f0_method,
332
+ filter_radius,
333
+ inp_f0,
334
+ )
335
+ pitch = pitch[:p_len]
336
+ pitchf = pitchf[:p_len]
337
+ if self.device == "mps":
338
+ pitchf = pitchf.astype(np.float32)
339
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
340
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
341
+ t2 = ttime()
342
+ times[1] += t2 - t1
343
+ for t in opt_ts:
344
+ t = t // self.window * self.window
345
+ if if_f0 == 1:
346
+ audio_opt.append(
347
+ self.vc(
348
+ model,
349
+ net_g,
350
+ sid,
351
+ audio_pad[s : t + self.t_pad2 + self.window],
352
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
353
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
354
+ times,
355
+ index,
356
+ big_npy,
357
+ index_rate,
358
+ version,
359
+ )[self.t_pad_tgt : -self.t_pad_tgt]
360
+ )
361
+ else:
362
+ audio_opt.append(
363
+ self.vc(
364
+ model,
365
+ net_g,
366
+ sid,
367
+ audio_pad[s : t + self.t_pad2 + self.window],
368
+ None,
369
+ None,
370
+ times,
371
+ index,
372
+ big_npy,
373
+ index_rate,
374
+ version,
375
+ )[self.t_pad_tgt : -self.t_pad_tgt]
376
+ )
377
+ s = t
378
+ if if_f0 == 1:
379
+ audio_opt.append(
380
+ self.vc(
381
+ model,
382
+ net_g,
383
+ sid,
384
+ audio_pad[t:],
385
+ pitch[:, t // self.window :] if t is not None else pitch,
386
+ pitchf[:, t // self.window :] if t is not None else pitchf,
387
+ times,
388
+ index,
389
+ big_npy,
390
+ index_rate,
391
+ version,
392
+ )[self.t_pad_tgt : -self.t_pad_tgt]
393
+ )
394
+ else:
395
+ audio_opt.append(
396
+ self.vc(
397
+ model,
398
+ net_g,
399
+ sid,
400
+ audio_pad[t:],
401
+ None,
402
+ None,
403
+ times,
404
+ index,
405
+ big_npy,
406
+ index_rate,
407
+ version,
408
+ )[self.t_pad_tgt : -self.t_pad_tgt]
409
+ )
410
+ audio_opt = np.concatenate(audio_opt)
411
+ if rms_mix_rate != 1:
412
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
413
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
414
+ audio_opt = librosa.resample(
415
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
416
+ )
417
+ audio_max = np.abs(audio_opt).max() / 0.99
418
+ max_int16 = 32768
419
+ if audio_max > 1:
420
+ max_int16 /= audio_max
421
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
422
+ del pitch, pitchf, sid
423
+ if torch.cuda.is_available():
424
+ torch.cuda.empty_cache()
425
+ return audio_opt