kfahn's picture
Update app.py
34e4365
raw
history blame
3.53 kB
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2
with open("test.html") as f:
lines = f.readlines()
def create_key(seed=0):
return jax.random.PRNGKey(seed)
#def addp5sketch(url):
# iframe = f'<iframe src ={url} style="border:none;height:525px;width:100%"/frame>'
# return gr.HTML(iframe)
def wandb_report(url):
iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>'
return gr.HTML(iframe)
report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5'
control_img = 'myimage.jpg'
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
image = Image.fromarray(image)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images[0]
#output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output
with gr.Blocks(theme='kfahn/AnimalPose') as demo:
gr.Markdown(
"""
# Animal Pose Control Net
## This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
[Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
[Diffusers model](https://huggingface.co/JFoz/dog-pose)
[Github](https://github.com/fi4cr/animalpose)
[Training Report](https://wandb.ai/john-fozard/AP10K-pose/runs/wn89ezaw)
""")
with gr.Row():
with gr.Column():
prompts = gr.Textbox(label="Prompt", placeholder="black cocker spaniel sitting on a lawn, best quality")
negative_prompts = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, missing ears, missing paws")
conditioning_image = gr.Image(label="Conditioning Image")
run_btn = gr.Button("Run")
with gr.Column():
#keypoint_tool = addp5sketch(sketch_url)
keypoint_tool = gr.HTML(lines)
output = gr.Image(
label="Result",
)
run_btn.click(fn=infer, inputs = [prompts, negative_prompts, conditioning_image], outputs = output)
#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = output,
#examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]])
#with gr.Row():
# report = wandb_report(report_url)
demo.launch(debut=True)