kfahn's picture
Update app.py
a9b5cc4
raw
history blame
5.16 kB
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import gc
report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5'
sketch_url = 'https://editor.p5js.org/kfahn/full/OshQky7RS'
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def addp5sketch(url):
iframe = f'<iframe src ={url} style="border:none;height:495px;width:100%"/frame>'
return gr.HTML(iframe)
def wandb_report(url):
iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>'
return gr.HTML(iframe)
control_img = 'myimage.jpg'
examples = [["a yellow dog in grass", "lowres, two heads, bad muzzle, bad anatomy, missing ears, missing paws", "example1.jpg"]]
#default_example = examples[0]
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16, safety_checker=None,
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
image = Image.fromarray(image)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images[0,0]
#output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
del image
del prompt_ids
del negative_prompt_ids
gc.collect()
output=np.array(output, dtype=np.float32)
return output
with gr.Blocks(css=".gradio-container {background-image: linear-gradient(to bottom, #206dff 10%, #f8d0ab 90%)};") as demo:
gr.Markdown(
"""
<h1 style="text-align: center; font-size: 30px; color: white">
πŸ• Animal Pose Control Net 🐈
</h1>
<h3 style="text-align: left;"> This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with a new type of conditioning.</h3>
<h3 style="text-align: left;"> While this is definitely a work in progress, you can still try it out by using the p5 sketch to create a keypoint image and using it as the conditioning image.</h3>
<h3 style="text-align: left;"> The model was generated as part of the Hugging Face Jax Diffusers sprint. Thank you to both Hugging Face and Google Cloud who provided the TPUs for training!
<h3 style="text-align: left;"> The dataset was built using the OpenPifPaf Animalpose plugin.</h3>
</h3>
""")
with gr.Row():
with gr.Column():
prompts = gr.Textbox(label="Prompt", placeholder="animal standing, best quality, highres")
negative_prompts = gr.Textbox(label="Negative Prompt", value="lowres, two heads, bad muzzle, bad anatomy, missing ears, missing paws")
conditioning_image = gr.Image(label="Conditioning Image")
# conditioning_image = gr.Image(label="Conditioning Image", value=default_example[3])
run_btn = gr.Button("Run")
output = gr.Image(
label="Result",
)
#wandb = wandb_report(report_url)
with gr.Column():
keypoint_tool = addp5sketch(sketch_url)
gr.Markdown(
"""
<h3 style="text-align: left;">Additional Information</h3>
<a style = "color: black; font-size: 20px" href="https://openpifpaf.github.io/plugins_animalpose.html">OpenPifPaf Animalpose</a>
<a style = "color: black; font-size: 20px" href="https://huggingface.co/datasets/JFoz/dog-cat-pose">Dataset</a>
<a style = "color: black; font-size: 20px" href="https://huggingface.co/JFoz/dog-cat-pose">Diffusers model</a>
<a style = "color: black; font-size: 20px" href="https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5"> WANDB Training Report</a>
<a style = "color: black; font-size: 20px" href="https://github.com/fi4cr/animalpose/tree/main/scripts">Training Scripts</a>
<a style = "color: black; font-size: 20px" href="https://p5js.org">p5.js</a>
""")
run_btn.click(fn=infer, inputs = [prompts, negative_prompts, conditioning_image], outputs = output)
#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = output,
#examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]])
demo.launch(debug=True)