Upload app.py
Browse filesAdd app.py file
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
+
import torch
|
5 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
6 |
+
|
7 |
+
controlnet = ControlNetModel.from_pretrained("JFoz/dog-cat-pose", torch_dtype=torch.float16, use_safetensors=True)
|
8 |
+
|
9 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
10 |
+
"runwayml/stable-diffusion-v1-5",
|
11 |
+
controlnet=controlnet,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
safety_checker=None,
|
14 |
+
)
|
15 |
+
|
16 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
17 |
+
|
18 |
+
pipe.enable_xformers_memory_efficient_attention()
|
19 |
+
pipe.enable_model_cpu_offload()
|
20 |
+
pipe.enable_attention_slicing()
|
21 |
+
|
22 |
+
def infer(
|
23 |
+
prompt,
|
24 |
+
negative_prompt,
|
25 |
+
conditioning_image,
|
26 |
+
num_inference_steps=30,
|
27 |
+
size=768,
|
28 |
+
guidance_scale=7.0,
|
29 |
+
seed=1234,
|
30 |
+
):
|
31 |
+
|
32 |
+
conditioning_image_raw = Image.fromarray(conditioning_image)
|
33 |
+
#conditioning_image = conditioning_image_raw.convert('L')
|
34 |
+
|
35 |
+
g_cpu = torch.Generator()
|
36 |
+
|
37 |
+
if seed == -1:
|
38 |
+
generator = g_cpu.manual_seed(g_cpu.seed())
|
39 |
+
else:
|
40 |
+
generator = g_cpu.manual_seed(seed)
|
41 |
+
|
42 |
+
output_image = pipe(
|
43 |
+
prompt,
|
44 |
+
conditioning_image,
|
45 |
+
height=size,
|
46 |
+
width=size,
|
47 |
+
num_inference_steps=num_inference_steps,
|
48 |
+
generator=generator,
|
49 |
+
negative_prompt=negative_prompt,
|
50 |
+
guidance_scale=guidance_scale,
|
51 |
+
controlnet_conditioning_scale=1.0,
|
52 |
+
).images[0]
|
53 |
+
|
54 |
+
#del conditioning_image, conditioning_image_raw
|
55 |
+
#gc.collect()
|
56 |
+
|
57 |
+
return output_image
|
58 |
+
|
59 |
+
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
|
60 |
+
gr.Markdown(
|
61 |
+
"""
|
62 |
+
# Animal Pose Control Net
|
63 |
+
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
|
64 |
+
""")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
prompt = gr.Textbox(
|
69 |
+
label="Prompt",
|
70 |
+
)
|
71 |
+
negative_prompt = gr.Textbox(
|
72 |
+
label="Negative Prompt",
|
73 |
+
)
|
74 |
+
conditioning_image = gr.Image(
|
75 |
+
label="Conditioning Image",
|
76 |
+
)
|
77 |
+
with gr.Accordion('Advanced options', open=False):
|
78 |
+
with gr.Row():
|
79 |
+
num_inference_steps = gr.Slider(
|
80 |
+
10, 40, 20,
|
81 |
+
step=1,
|
82 |
+
label="Steps",
|
83 |
+
)
|
84 |
+
size = gr.Slider(
|
85 |
+
256, 768, 512,
|
86 |
+
step=128,
|
87 |
+
label="Size",
|
88 |
+
)
|
89 |
+
with gr.Row():
|
90 |
+
guidance_scale = gr.Slider(
|
91 |
+
label='Guidance Scale',
|
92 |
+
minimum=0.1,
|
93 |
+
maximum=30.0,
|
94 |
+
value=7.0,
|
95 |
+
step=0.1
|
96 |
+
)
|
97 |
+
seed = gr.Slider(
|
98 |
+
label='Seed',
|
99 |
+
value=-1,
|
100 |
+
minimum=-1,
|
101 |
+
maximum=2147483647,
|
102 |
+
step=1,
|
103 |
+
# randomize=True
|
104 |
+
)
|
105 |
+
submit_btn = gr.Button(
|
106 |
+
value="Submit",
|
107 |
+
variant="primary"
|
108 |
+
)
|
109 |
+
with gr.Column(min_width=300):
|
110 |
+
output = gr.Image(
|
111 |
+
label="Result",
|
112 |
+
)
|
113 |
+
|
114 |
+
submit_btn.click(
|
115 |
+
fn=infer,
|
116 |
+
inputs=[
|
117 |
+
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
|
118 |
+
#prompt, size, seed
|
119 |
+
],
|
120 |
+
outputs=output
|
121 |
+
)
|
122 |
+
gr.Examples(
|
123 |
+
examples=[
|
124 |
+
#["a tortoiseshell cat is sitting on a cushion"],
|
125 |
+
#["a yellow dog standing on a lawn"],
|
126 |
+
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
|
127 |
+
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
|
128 |
+
],
|
129 |
+
inputs=[
|
130 |
+
#prompt, negative_prompt, conditioning_image
|
131 |
+
prompt
|
132 |
+
],
|
133 |
+
outputs=output,
|
134 |
+
fn=infer,
|
135 |
+
cache_examples=True,
|
136 |
+
)
|
137 |
+
gr.Markdown(
|
138 |
+
"""
|
139 |
+
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
|
140 |
+
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
|
141 |
+
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
|
142 |
+
""")
|
143 |
+
|
144 |
+
#gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch()
|
145 |
+
demo.launch()
|