Update app.py
Browse filesUsing https://huggingface.co/spaces/jax-diffusers-event/canny_coyo1m/blob/main/app.py as a guide
app.py
CHANGED
@@ -1,60 +1,58 @@
|
|
1 |
-
from PIL import Image
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
import
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
"
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
width=size,
|
47 |
-
num_inference_steps=num_inference_steps,
|
48 |
-
generator=generator,
|
49 |
-
negative_prompt=negative_prompt,
|
50 |
-
guidance_scale=guidance_scale,
|
51 |
-
controlnet_conditioning_scale=1.0,
|
52 |
-
).images[0]
|
53 |
|
54 |
-
|
55 |
-
#gc.collect()
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
|
60 |
gr.Markdown(
|
@@ -63,83 +61,22 @@ with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata")
|
|
63 |
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
|
64 |
""")
|
65 |
|
66 |
-
|
67 |
-
with gr.Column():
|
68 |
-
prompt = gr.Textbox(
|
69 |
-
label="Prompt",
|
70 |
-
)
|
71 |
-
negative_prompt = gr.Textbox(
|
72 |
-
label="Negative Prompt",
|
73 |
-
)
|
74 |
-
conditioning_image = gr.Image(
|
75 |
-
label="Conditioning Image",
|
76 |
-
)
|
77 |
-
with gr.Accordion('Advanced options', open=False):
|
78 |
-
with gr.Row():
|
79 |
-
num_inference_steps = gr.Slider(
|
80 |
-
10, 40, 20,
|
81 |
-
step=1,
|
82 |
-
label="Steps",
|
83 |
-
)
|
84 |
-
size = gr.Slider(
|
85 |
-
256, 768, 512,
|
86 |
-
step=128,
|
87 |
-
label="Size",
|
88 |
-
)
|
89 |
-
with gr.Row():
|
90 |
-
guidance_scale = gr.Slider(
|
91 |
-
label='Guidance Scale',
|
92 |
-
minimum=0.1,
|
93 |
-
maximum=30.0,
|
94 |
-
value=7.0,
|
95 |
-
step=0.1
|
96 |
-
)
|
97 |
-
seed = gr.Slider(
|
98 |
-
label='Seed',
|
99 |
-
value=-1,
|
100 |
-
minimum=-1,
|
101 |
-
maximum=2147483647,
|
102 |
-
step=1,
|
103 |
-
# randomize=True
|
104 |
-
)
|
105 |
-
submit_btn = gr.Button(
|
106 |
-
value="Submit",
|
107 |
-
variant="primary"
|
108 |
-
)
|
109 |
-
with gr.Column(min_width=300):
|
110 |
-
output = gr.Image(
|
111 |
-
label="Result",
|
112 |
-
)
|
113 |
-
|
114 |
-
submit_btn.click(
|
115 |
-
fn=infer,
|
116 |
-
inputs=[
|
117 |
-
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
|
118 |
-
#prompt, size, seed
|
119 |
-
],
|
120 |
-
outputs=output
|
121 |
-
)
|
122 |
-
gr.Examples(
|
123 |
examples=[
|
124 |
#["a tortoiseshell cat is sitting on a cushion"],
|
125 |
#["a yellow dog standing on a lawn"],
|
126 |
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
|
127 |
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
|
128 |
-
]
|
129 |
-
inputs=[
|
130 |
-
#prompt, negative_prompt, conditioning_image
|
131 |
-
prompt
|
132 |
-
],
|
133 |
-
outputs=output,
|
134 |
-
fn=infer,
|
135 |
cache_examples=True,
|
136 |
)
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
"""
|
139 |
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
|
140 |
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
|
141 |
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
|
142 |
""")
|
143 |
-
|
144 |
-
#gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch()
|
145 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import jax.numpy as jnp
|
3 |
+
import jax
|
4 |
+
import numpy as np
|
5 |
+
from flax.jax_utils import replicate
|
6 |
+
from flax.training.common_utils import shard
|
7 |
+
from PIL import Image
|
8 |
+
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
|
9 |
+
import cv2
|
10 |
|
11 |
+
def create_key(seed=0):
|
12 |
+
return jax.random.PRNGKey(seed)
|
13 |
|
14 |
+
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
15 |
+
"JFoz/dog-cat-pose", dtype=jnp.bfloat16
|
16 |
+
)
|
17 |
+
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
18 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
|
19 |
)
|
20 |
|
21 |
+
def infer(prompts, negative_prompts, image):
|
22 |
+
params["controlnet"] = controlnet_params
|
23 |
+
|
24 |
+
num_samples = 1 #jax.device_count()
|
25 |
+
rng = create_key(0)
|
26 |
+
rng = jax.random.split(rng, jax.device_count())
|
27 |
+
#im = canny_filter(image)
|
28 |
+
#canny_image = Image.fromarray(im)
|
29 |
+
|
30 |
+
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
31 |
+
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
|
32 |
+
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
|
33 |
+
|
34 |
+
p_params = replicate(params)
|
35 |
+
prompt_ids = shard(prompt_ids)
|
36 |
+
negative_prompt_ids = shard(negative_prompt_ids)
|
37 |
+
processed_image = shard(processed_image)
|
38 |
+
|
39 |
+
output = pipe(
|
40 |
+
prompt_ids=prompt_ids,
|
41 |
+
image=processed_image,
|
42 |
+
params=p_params,
|
43 |
+
prng_seed=rng,
|
44 |
+
num_inference_steps=50,
|
45 |
+
neg_prompt_ids=negative_prompt_ids,
|
46 |
+
jit=True,
|
47 |
+
).images
|
48 |
+
|
49 |
+
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
|
50 |
+
return output_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
#gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch()
|
|
|
53 |
|
54 |
+
title = "Animal Pose Control Net"
|
55 |
+
description = "This is a demo on ControlNet based on canny filter."
|
56 |
|
57 |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
|
58 |
gr.Markdown(
|
|
|
61 |
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
|
62 |
""")
|
63 |
|
64 |
+
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
examples=[
|
66 |
#["a tortoiseshell cat is sitting on a cushion"],
|
67 |
#["a yellow dog standing on a lawn"],
|
68 |
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
|
69 |
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
|
70 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
cache_examples=True,
|
72 |
)
|
73 |
+
|
74 |
+
gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image",
|
75 |
+
title = title, description = description, examples = gr.examples, theme='gradio/soft').launch()
|
76 |
+
|
77 |
+
gr.Markdown(
|
78 |
"""
|
79 |
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
|
80 |
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
|
81 |
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
|
82 |
""")
|
|
|
|
|
|