File size: 7,484 Bytes
35a9ed4
bdee200
35a9ed4
 
 
2a274cc
35a9ed4
 
2a274cc
 
 
 
 
 
 
35a9ed4
 
e856606
bdee200
19540cf
bdee200
893825d
bdee200
19540cf
488936c
6207473
 
 
 
35a9ed4
5672cc2
 
 
678631b
 
 
 
 
5672cc2
 
 
 
 
678631b
 
13d4a9a
678631b
 
 
 
 
5672cc2
2a274cc
 
 
 
 
 
 
 
 
 
 
35a9ed4
 
 
 
 
 
 
 
 
 
 
 
8c2e68c
35a9ed4
2a274cc
dc9bdbf
8c2e68c
2a274cc
af1dd1a
2a274cc
d28dde6
2a274cc
 
c0784bd
 
 
 
44284c4
 
7f75f49
44284c4
 
 
 
 
 
 
 
 
 
5672cc2
 
 
 
 
 
 
 
 
 
678631b
 
 
 
 
 
 
 
 
 
 
5439a6f
 
 
0ca2a07
5439a6f
 
 
 
358fc3b
5439a6f
 
051c943
5439a6f
 
 
 
 
 
 
 
 
678631b
 
 
5672cc2
 
35a9ed4
 
 
9d69626
35a9ed4
b47ae2e
a945d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5672cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27ab64e
86023a7
5672cc2
 
 
 
 
5439a6f
5672cc2
 
 
44284c4
5672cc2
 
35a9ed4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image 
import numpy as np 
import os 
import tempfile
import gradio as gr

import cv2
try:
    from mmengine.visualization import Visualizer
except ImportError:
    Visualizer = None
    print("Warning: mmengine is not installed, visualization is disabled.")
    
# Load the model and tokenizer 
model_path = "ByteDance/Sa2VA-4B"
 
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="cuda:0",
    trust_remote_code=True,
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(
    model_path,
    trust_remote_code = True,
)

from third_parts import VideoReader
def read_video(video_path, video_interval):
    vid_frames = VideoReader(video_path)[::video_interval]
    
    temp_dir = tempfile.mkdtemp()
    os.makedirs(temp_dir, exist_ok=True)
    image_paths = []  # List to store paths of saved images
    
    for frame_idx in range(len(vid_frames)):
        frame_image = vid_frames[frame_idx]
        frame_image = frame_image[..., ::-1]  # BGR (opencv system) to RGB (numpy system)
        frame_image = Image.fromarray(frame_image)
        vid_frames[frame_idx] = frame_image

        # Save the frame as a .jpg file in the temporary folder
        image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
        frame_image.save(image_path, format="JPEG")

        # Append the image path to the list
        image_paths.append(image_path)
    return vid_frames, image_paths

def visualize(pred_mask, image_path, work_dir):
    visualizer = Visualizer()
    img = cv2.imread(image_path)
    visualizer.set_image(img)
    visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
    visual_result = visualizer.get_image()

    output_path = os.path.join(work_dir, os.path.basename(image_path))
    cv2.imwrite(output_path, visual_result)
    return output_path

def image_vision(image_input_path, prompt):
    image_path = image_input_path
    text_prompts = f"<image>{prompt}"
    image = Image.open(image_path).convert('RGB')
    input_dict = {
        'image': image,
        'text': text_prompts,
        'past_text': '',
        'mask_prompts': None,
        'tokenizer': tokenizer,
    }
    return_dict = model.predict_forward(**input_dict)
    print(return_dict)
    answer = return_dict["prediction"] # the text format answer
    
    seg_image = return_dict["prediction_masks"]
    
    if '[SEG]' in answer and Visualizer is not None:
        pred_masks = seg_image[0]
        temp_dir = tempfile.mkdtemp()
        pred_mask = pred_masks
        os.makedirs(temp_dir, exist_ok=True)
        seg_result = visualize(pred_mask, image_input_path, temp_dir)
        return answer, seg_result
    else:
        return answer, None

def video_vision(video_input_path, prompt, video_interval):
    # Open the original video
    cap = cv2.VideoCapture(video_input_path)

    # Get original video properties
    original_fps = cap.get(cv2.CAP_PROP_FPS)

    frame_skip_factor = video_interval

    # Calculate new FPS
    new_fps = original_fps / frame_skip_factor

    vid_frames, image_paths = read_video(video_input_path, video_interval)
    # create a question (<image> is a placeholder for the video frames)
    question = f"<image>{prompt}"
    result = model.predict_forward(
        video=vid_frames,
        text=question,
        tokenizer=tokenizer,
    )
    prediction = result['prediction']
    print(prediction)

    if '[SEG]' in prediction and Visualizer is not None:
        _seg_idx = 0
        pred_masks = result['prediction_masks'][_seg_idx]
        seg_frames = []
        for frame_idx in range(len(vid_frames)):
            pred_mask = pred_masks[frame_idx]
            temp_dir = tempfile.mkdtemp()
            os.makedirs(temp_dir, exist_ok=True)
            seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
            seg_frames.append(seg_frame)

        output_video = "output_video.mp4"

        # Read the first image to get the size (resolution)
        frame = cv2.imread(seg_frames[0])
        height, width, layers = frame.shape

        # Define the video codec and create VideoWriter object
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Codec for MP4
        video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))

        # Iterate over the image paths and write to the video
        for img_path in seg_frames:
            frame = cv2.imread(img_path)
            video.write(frame)

        # Release the video writer
        video.release()

        print(f"Video created successfully at {output_video}")

        return result['prediction'], output_video
            
    else:
        return result['prediction'], None
    


# Gradio UI

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Column():
        gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/magic-research/Sa2VA">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://arxiv.org/abs/2501.04001">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
            <a href="https://huggingface.co/fffiloni">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
            </a>
        </div>
        """)
        with gr.Tab("Single Image"):
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(label="Image IN", type="filepath")
                    with gr.Row():
                        instruction = gr.Textbox(label="Instruction", scale=4)
                        submit_image_btn = gr.Button("Submit", scale=1)
                with gr.Column():
                    output_res = gr.Textbox(label="Response")
                    output_image = gr.Image(label="Segmentation", type="numpy")
    
            submit_image_btn.click(
                fn = image_vision,
                inputs = [image_input, instruction],
                outputs = [output_res, output_image]
            )
        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column():
                    video_input = gr.Video(label="Video IN")
                    frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
                    with gr.Row():
                        vid_instruction = gr.Textbox(label="Instruction", scale=4)
                        submit_video_btn = gr.Button("Submit", scale=1)
                with gr.Column():
                    vid_output_res = gr.Textbox(label="Response")
                    output_video = gr.Video(label="Segmentation")
            
            submit_video_btn.click(
                fn = video_vision,
                inputs = [video_input, vid_instruction, frame_interval],
                outputs = [vid_output_res, output_video]
            )

demo.queue().launch(show_api=False, show_error=True)