File size: 8,290 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from typing import Dict, Sequence

import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence

from xtuner.parallel.sequence import (get_sequence_parallel_world_size,
                                      pad_for_sequence_parallel)
from xtuner.utils import DEFAULT_PAD_TOKEN_INDEX, IGNORE_INDEX


def video_lisa_collate_fn(instances: Sequence[Dict],
                       pad_index: int = DEFAULT_PAD_TOKEN_INDEX,
                       return_hf_format: bool = False,
                       use_varlen_attn: bool = False):
    seq_parallel_world_size = get_sequence_parallel_world_size()

    input_ids, labels = [], []
    has_image = any(inst.get('pixel_values') is not None for inst in instances)
    has_pe = any(inst.get('image_grid_thw', None) is not None for inst in instances)
    has_fast_image = any(inst.get('fast_pixel_values', None) is not None for inst in instances)
    has_grounding_image = any(inst.get('g_pixel_values') is not None for inst in instances)
    has_mask = any(inst.get('masks') is not None for inst in instances)
    has_bboxes = any(inst.get('bboxes') is not None for inst in instances)
    has_points = any(inst.get('points') is not None for inst in instances)
    has_fast_exists = any(inst.get('fast_exists') is not None for inst in instances)

    has_vp = any(inst.get('vp_overall_mask') is not None for inst in instances)
    has_prompt_mask = any(inst.get('prompt_masks') is not None for inst in instances)

    if use_varlen_attn:
        position_ids, cumulative_len = [], []
        assert len(instances) == 1, (
            f'If utilizing varlen attention, the batch size should be'
            f' set to 1, but got {len(instances)}')
        assert not has_image, 'Currently, it is not configured to '
        'accommodate the use of varlen Attention in multimodal training'

    if has_image:
        pixel_values = []
        frames_per_batch = []
        image_grid_thw = []
    if has_grounding_image:
        grounding_pixel_values = []
    if has_mask:
        object_masks = []
    if has_bboxes:
        object_bboxes = []
    if has_points:
        prompt_points = []
    if has_fast_image:
        fast_pixel_values = []
    if has_fast_exists:
        fast_exists = []
    if has_vp:
        vp_overall_mask = []
    else:
        vp_overall_mask = None

    if has_prompt_mask:
        prompt_masks = []
    else:
        prompt_masks = None

    for example in instances:
        input_ids.append(torch.LongTensor(example['input_ids']))
        labels.append(torch.LongTensor(example['labels']))
        if use_varlen_attn:
            cumulative_len.append(torch.IntTensor(example['cumulative_len']))
            position_ids.append(torch.LongTensor(example['position_ids']))

        if has_image:
            pixel_values.append(example['pixel_values'])
            if has_pe:
                image_grid_thw.append(example['image_grid_thw'])
            if has_vp:
                if 'vp_overall_mask' in example.keys() and example['vp_overall_mask'] is not None:
                    vp_overall_mask.append(example['vp_overall_mask'])
                else:
                    vp_overall_mask.append(torch.Tensor([False] * len(pixel_values[-1])))
        if has_fast_image:
            if 'fast_pixel_values' in example.keys() and example['fast_pixel_values'] is not None:
                fast_pixel_values.append(example['fast_pixel_values'])
        if has_fast_exists:
            if 'fast_exists' in example.keys() and example['fast_exists'] is not None:
                fast_exists.append(example['fast_exists'])
        if has_grounding_image and 'g_pixel_values' in example.keys():
            if isinstance(example['g_pixel_values'], list):
                grounding_pixel_values += example['g_pixel_values']
                frames_per_batch.append(len(example['g_pixel_values']))
            else:
                grounding_pixel_values.append(example['g_pixel_values'])
                frames_per_batch.append(1)

        if has_mask:
            if 'masks' in example.keys() and example['masks'] is not None:
                if isinstance(example['masks'], list):
                    if isinstance(example['masks'][0], np.ndarray):
                        _masks = np.stack(example['masks'], axis=0)
                        _masks = torch.from_numpy(_masks)
                        object_masks.append(_masks)
                    else:
                        object_masks.append(torch.stack(example['masks'], dim=0))
                else:
                    object_masks.append(example['masks'])
        if has_bboxes:
            if 'bboxes' in example.keys() and example['bboxes'] is not None:
                object_bboxes.append(example['bboxes'])
        if has_points:
            if 'points' in example.keys() and example['points'] is not None:
                prompt_points.append(example['points'])

        if has_prompt_mask:
            if 'prompt_masks' in example.keys():
                prompt_masks.append(example['prompt_masks'])

    ori_length = [len(ids) for ids in input_ids]
    if len(instances) > 1:
        input_ids = pad_sequence(
            input_ids, batch_first=True, padding_value=pad_index)
        labels = pad_sequence(
            labels, batch_first=True, padding_value=IGNORE_INDEX)
    else:
        input_ids = torch.stack(input_ids)
        labels = torch.stack(labels)

    if use_varlen_attn:
        assert input_ids.size(1) % seq_parallel_world_size == 0
        attention_mask = None
        position_ids = torch.stack(position_ids, dim=0)
    else:
        # Some tokenizers have the same eos token and pad token, so input_ids
        # cannot be masked directly based on the pad token id.
        attention_mask = torch.zeros_like(input_ids).bool()
        for i, length in enumerate(ori_length):
            attention_mask[i, :length] = True

        bs, seq_len = input_ids.shape
        position_ids = torch.arange(seq_len).unsqueeze(0).long().repeat(bs, 1)

    if seq_parallel_world_size > 1:
        input_ids = pad_for_sequence_parallel(input_ids, pad_index)
        labels = pad_for_sequence_parallel(labels, IGNORE_INDEX)
        position_ids = pad_for_sequence_parallel(position_ids, 0)
        if attention_mask is not None:
            attention_mask = pad_for_sequence_parallel(attention_mask, 0)

    if use_varlen_attn:
        max_seqlen = (
            cumulative_len[0][1:] -  # noqa: W504
            cumulative_len[0][:-1]).max().item()
        data_dict = {
            'input_ids': input_ids,
            'cumulative_len': cumulative_len,
            'position_ids': position_ids,
            'labels': labels,
            'max_seqlen': max_seqlen
        }
    else:
        data_dict = {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'position_ids': position_ids,
            'labels': labels
        }

    if has_image:
        if all(x.shape == pixel_values[0].shape for x in pixel_values):
            pixel_values = torch.stack(pixel_values, dim=0)
        data_dict['frames_per_batch'] = frames_per_batch
        data_dict['pixel_values'] = pixel_values
        if has_pe:
            data_dict['image_grid_thw'] = image_grid_thw

    if has_fast_image:
        if all(x.shape == fast_pixel_values[0].shape for x in fast_pixel_values):
            fast_pixel_values = torch.stack(fast_pixel_values, dim=0)
        data_dict['fast_pixel_values'] = fast_pixel_values

    if has_fast_exists:
        data_dict['fast_exists'] = fast_exists

    if has_vp:
        data_dict['vp_overall_mask'] = torch.cat(vp_overall_mask, dim=0)

    if has_prompt_mask:
        data_dict['prompt_masks'] = prompt_masks

    if has_grounding_image:
        # if all(x.shape == grounding_pixel_values[0].shape for x in grounding_pixel_values):
            # grounding_pixel_values = torch.stack(grounding_pixel_values, dim=0)
        data_dict['g_pixel_values'] = grounding_pixel_values

    if has_mask:
        data_dict['masks'] = object_masks

    if has_bboxes:
        data_dict['bboxes'] = object_bboxes

    if has_points:
        data_dict['points'] = prompt_points

    if return_hf_format:
        return data_dict
    else:
        return {'data': data_dict, 'data_samples': None}