File size: 12,915 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional, Tuple, Type

import torch
from torch import nn

from third_parts.sam2.modeling.sam2_utils import LayerNorm2d, MLP


class MaskDecoder(nn.Module):
    def __init__(
        self,
        *,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
        use_high_res_features: bool = False,
        iou_prediction_use_sigmoid=False,
        dynamic_multimask_via_stability=False,
        dynamic_multimask_stability_delta=0.05,
        dynamic_multimask_stability_thresh=0.98,
        pred_obj_scores: bool = False,
        pred_obj_scores_mlp: bool = False,
        use_multimask_token_for_obj_ptr: bool = False,
    ) -> None:
        """
        Predicts masks given an image and prompt embeddings, using a
        transformer architecture.

        Arguments:
          transformer_dim (int): the channel dimension of the transformer
          transformer (nn.Module): the transformer used to predict masks
          num_multimask_outputs (int): the number of masks to predict
            when disambiguating masks
          activation (nn.Module): the type of activation to use when
            upscaling masks
          iou_head_depth (int): the depth of the MLP used to predict
            mask quality
          iou_head_hidden_dim (int): the hidden dimension of the MLP
            used to predict mask quality
        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        self.pred_obj_scores = pred_obj_scores
        if self.pred_obj_scores:
            self.obj_score_token = nn.Embedding(1, transformer_dim)
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(
                transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
            ),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(
                transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
            ),
            activation(),
        )
        self.use_high_res_features = use_high_res_features
        if use_high_res_features:
            self.conv_s0 = nn.Conv2d(
                transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
            )
            self.conv_s1 = nn.Conv2d(
                transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
            )

        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )

        self.iou_prediction_head = MLP(
            transformer_dim,
            iou_head_hidden_dim,
            self.num_mask_tokens,
            iou_head_depth,
            sigmoid_output=iou_prediction_use_sigmoid,
        )
        if self.pred_obj_scores:
            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
            if pred_obj_scores_mlp:
                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)

        # When outputting a single mask, optionally we can dynamically fall back to the best
        # multimask output token if the single mask output token gives low stability scores.
        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
        repeat_image: bool,
        high_res_features: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Arguments:
          image_embeddings (torch.Tensor): the embeddings from the image encoder
          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
          multimask_output (bool): Whether to return multiple masks or a single
            mask.

        Returns:
          torch.Tensor: batched predicted masks
          torch.Tensor: batched predictions of mask quality
          torch.Tensor: batched SAM token for mask output
        """
        masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
            repeat_image=repeat_image,
            high_res_features=high_res_features,
        )

        # Select the correct mask or masks for output
        if multimask_output:
            masks = masks[:, 1:, :, :]
            iou_pred = iou_pred[:, 1:]
        elif self.dynamic_multimask_via_stability and not self.training:
            masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
        else:
            masks = masks[:, 0:1, :, :]
            iou_pred = iou_pred[:, 0:1]

        if multimask_output and self.use_multimask_token_for_obj_ptr:
            sam_tokens_out = mask_tokens_out[:, 1:]  # [b, 3, c] shape
        else:
            # Take the mask output token. Here we *always* use the token for single mask output.
            # At test time, even if we track after 1-click (and using multimask_output=True),
            # we still take the single mask token here. The rationale is that we always track
            # after multiple clicks during training, so the past tokens seen during training
            # are always the single mask token (and we'll let it be the object-memory token).
            sam_tokens_out = mask_tokens_out[:, 0:1]  # [b, 1, c] shape

        # Prepare output
        return masks, iou_pred, sam_tokens_out, object_score_logits

    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        repeat_image: bool,
        high_res_features: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""
        # Concatenate output tokens
        s = 0
        if self.pred_obj_scores:
            output_tokens = torch.cat(
                [
                    self.obj_score_token.weight,
                    self.iou_token.weight,
                    self.mask_tokens.weight,
                ],
                dim=0,
            )
            s = 1
        else:
            output_tokens = torch.cat(
                [self.iou_token.weight, self.mask_tokens.weight], dim=0
            )
        output_tokens = output_tokens.unsqueeze(0).expand(
            sparse_prompt_embeddings.size(0), -1, -1
        )
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        if repeat_image:
            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        else:
            assert image_embeddings.shape[0] == tokens.shape[0]
            src = image_embeddings
        src = src + dense_prompt_embeddings
        assert (
            image_pe.size(0) == 1
        ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        # print('src: ', src.dtype, 'pos_src:', pos_src.dtype, 'tokens:', tokens.dtype)
        _dtype = pos_src.dtype
        src = src.to(_dtype)
        tokens = tokens.to(_dtype)
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, s, :]
        mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)
        if not self.use_high_res_features:
            upscaled_embedding = self.output_upscaling(src)
        else:
            dc1, ln1, act1, dc2, act2 = self.output_upscaling
            feat_s0, feat_s1 = high_res_features
            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)

        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            hyper_in_list.append(
                self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
            )
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)
        if self.pred_obj_scores:
            assert s == 1
            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
        else:
            # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)

        return masks, iou_pred, mask_tokens_out, object_score_logits

    def _get_stability_scores(self, mask_logits):
        """
        Compute stability scores of the mask logits based on the IoU between upper and
        lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
        """
        mask_logits = mask_logits.flatten(-2)
        stability_delta = self.dynamic_multimask_stability_delta
        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
        stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
        return stability_scores

    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
        """
        When outputting a single mask, if the stability score from the current single-mask
        output (based on output token 0) falls below a threshold, we instead select from
        multi-mask outputs (based on output token 1~3) the mask with the highest predicted
        IoU score. This is intended to ensure a valid mask for both clicking and tracking.
        """
        # The best mask from multimask output tokens (1~3)
        multimask_logits = all_mask_logits[:, 1:, :, :]
        multimask_iou_scores = all_iou_scores[:, 1:]
        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
        batch_inds = torch.arange(
            multimask_iou_scores.size(0), device=all_iou_scores.device
        )
        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
        best_multimask_logits = best_multimask_logits.unsqueeze(1)
        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)

        # The mask from singlemask output token 0 and its stability score
        singlemask_logits = all_mask_logits[:, 0:1, :, :]
        singlemask_iou_scores = all_iou_scores[:, 0:1]
        stability_scores = self._get_stability_scores(singlemask_logits)
        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh

        # Dynamically fall back to best multimask output upon low stability scores.
        mask_logits_out = torch.where(
            is_stable[..., None, None].expand_as(singlemask_logits),
            singlemask_logits,
            best_multimask_logits,
        )
        iou_scores_out = torch.where(
            is_stable.expand_as(singlemask_iou_scores),
            singlemask_iou_scores,
            best_multimask_iou_scores,
        )
        return mask_logits_out, iou_scores_out