Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModel | |
from xtuner.registry import BUILDER | |
from xtuner.model.utils import get_peft_model_state_dict | |
class LisaModel(BaseModel): | |
def __init__(self, | |
mllm, | |
tokenizer, | |
grounding_encoder, | |
loss_mask=None, | |
loss_dice=None,): | |
super(LisaModel, self).__init__() | |
self.mllm = BUILDER.build(mllm) | |
if self.mllm.use_llm_lora: | |
self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True) | |
self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True) | |
self.tokenizer = BUILDER.build(tokenizer) | |
self._add_special_tokens() | |
self.grounding_encoder = BUILDER.build(grounding_encoder) | |
self.grounding_encoder.requires_grad_(False) | |
self.grounding_encoder.mask_decoder.requires_grad_(True) | |
in_dim = self.mllm.model.config.llm_config.hidden_size | |
out_dim = self.grounding_encoder.mask_decoder.transformer_dim | |
self.text_hidden_fcs = nn.Sequential( | |
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), | |
nn.Linear(in_dim, out_dim), nn.Dropout(0.0) | |
) | |
self.loss_mask = BUILDER.build(loss_mask) | |
self.loss_dice = BUILDER.build(loss_dice) | |
def _add_special_tokens(self): | |
special_tokens = ['[SEG]'] | |
num_new_tokens = self.tokenizer.add_tokens( | |
special_tokens, special_tokens=True) | |
if num_new_tokens > 0: | |
self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer)) | |
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0] | |
def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None): | |
pred_masks = [] | |
for i, pred_embedding in enumerate(pred_embeddings): | |
sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder( | |
points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1) | |
) | |
sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype) | |
low_res_masks, _ = self.grounding_encoder.mask_decoder( | |
image_embeddings=image_embeddings[i].unsqueeze(0), | |
image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, | |
multimask_output=False, ) | |
pred_mask = self.grounding_encoder.postprocess_masks( | |
low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], ) | |
pred_masks.append(pred_mask[:, 0]) | |
return pred_masks | |
def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False): | |
return super().load_state_dict(state_dict, strict, assign) | |
def state_dict(self, *args, **kwargs): | |
state_dict = super().state_dict(*args, **kwargs) | |
from collections import OrderedDict | |
to_return = OrderedDict() | |
# Step 1. visual_encoder | |
if self.mllm.use_visual_encoder_lora: | |
to_return.update( | |
get_peft_model_state_dict( | |
self.mllm.model.vision_model, state_dict=state_dict)) | |
elif not self.mllm.freeze_visual_encoder: | |
to_return.update({ | |
k: v | |
for k, v in state_dict.items() if 'visual_encoder.' in k | |
}) | |
# Step 2. LLM | |
if self.mllm.use_llm_lora: | |
to_return.update( | |
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)) | |
elif not self.mllm.freeze_llm: | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'llm.' in k}) | |
# Step 3. Projector | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'mlp1.' in k}) | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'grounding_encoder.mask_decoder.' in k}) | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'text_hidden_fcs.' in k}) | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'lm_head.weight' in k}) | |
to_return.update( | |
{k: v | |
for k, v in state_dict.items() if 'embed_tokens.weight' in k}) | |
return to_return | |
def forward(self, data, data_samples=None, mode='loss'): | |
if mode == 'loss': | |
return self.compute_loss(data) | |
elif mode == 'predict': | |
return self.predict(data) | |
elif mode == 'tensor': | |
return self._forward(data) | |
else: | |
raise NotImplementedError | |
def compute_loss(self,data, data_samples=None, mode='loss'): | |
g_pixel_values = data.pop('g_pixel_values', None) | |
gt_masks = data.pop('masks', None) | |
input_ids = data['input_ids'] | |
output = self.mllm(data, data_samples, mode) | |
if gt_masks is None: | |
g_pixel_values = [ | |
torch.randn(3, 512, 1024).to(output.hidden_states[-1]) | |
for _ in range(len(input_ids))] | |
ori_size_list = [(512, 1024) for _ in range(len(input_ids))] | |
seg_token_mask = torch.zeros_like(input_ids).bool() | |
seg_token_mask[:, -2] = True | |
else: | |
ori_size_list = [mask.shape[-2:] for mask in gt_masks] | |
seg_token_mask = input_ids == self.seg_token_idx | |
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values] | |
g_pixel_values = torch.stack([ | |
self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values | |
]) | |
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values) | |
seg_token_mask = seg_token_mask[:, 1:] | |
seg_token_mask = torch.cat([ | |
seg_token_mask, | |
seg_token_mask.new_zeros(seg_token_mask.shape[0], 1)], dim=-1) | |
hidden_states = output.hidden_states | |
hidden_states = self.text_hidden_fcs(hidden_states[-1]) | |
pred_embeddings = hidden_states[seg_token_mask] | |
seg_token_counts = seg_token_mask.int().sum(-1) | |
pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0) | |
pred_masks = self._generate_and_postprocess_masks( | |
pred_embeddings_list, image_embeddings, resize_list, ori_size_list) | |
if gt_masks is None: | |
return { | |
'loss_mask': pred_masks[0].sum() * 0.0, | |
'loss_dice': pred_masks[0].sum() * 0.0, | |
'llm_loss': output.loss, | |
} | |
bs = len(pred_masks) | |
loss_mask, loss_dice = 0, 0 | |
for i in range(bs): | |
pred_mask = pred_masks[i] | |
gt_mask = gt_masks[i] | |
sam_loss_mask = self.loss_mask(pred_mask, gt_mask) | |
sam_loss_dice = self.loss_dice(pred_mask, gt_mask) | |
accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean() | |
loss_mask += sam_loss_mask | |
loss_dice += sam_loss_dice | |
loss_dict = { | |
'loss_mask': loss_mask / bs, | |
'loss_dice': loss_dice / bs, | |
'llm_loss': output.loss, | |
} | |
return loss_dict | |
def predict(self, data): | |
generation_config = dict(max_new_tokens=1024, do_sample=False) | |
eos_token_id = self.tokenizer.convert_tokens_to_ids('<|end|>') | |
generation_config['eos_token_id'] = eos_token_id | |
pixel_values = data.pop('pixel_values') | |
attention_mask = data.pop('attention_mask', None) | |
input_ids = data['input_ids'] | |
generate_output = self.mllm.generate( | |
pixel_values=pixel_values, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
return_dict_in_generate=True, | |
**generation_config, | |
) | |
device = self.mllm.model.device | |
hidden_states = generate_output.hidden_states | |
last_hidden_states = [item[-1] for item in hidden_states[1:]] # remove input_ids | |
last_hidden_states = torch.cat(last_hidden_states, dim=1) | |
last_hidden_states = last_hidden_states[0] # remove batch dim | |
output_ids = generate_output.sequences[0][:-1] # remove batch dim and eos token | |
output_text = self.tokenizer.decode(output_ids) | |
seg_mask = output_ids == self.seg_token_idx | |
if seg_mask.sum() == 0: | |
return dict( | |
pred_mask_logits=None, | |
output_text=output_text, | |
) | |
seg_embeds = self.text_hidden_fcs(last_hidden_states[seg_mask]) | |
g_pixel_values = data.pop('g_pixel_values', None) | |
gt_masks = data['masks'] | |
ori_size_list = [mask.shape[-2:] for mask in gt_masks] | |
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values] | |
g_pixel_values = torch.stack([ | |
self.grounding_encoder.preprocess(pixel.to(device)) for pixel in g_pixel_values | |
]) | |
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values) | |
pred_masks = self._generate_and_postprocess_masks( | |
[seg_embeds], image_embeddings, resize_list, ori_size_list) | |
return dict( | |
pred_mask_logits=pred_masks[0], # remove batch dim | |
output_text=output_text, | |
) | |
def gradient_checkpointing_enable(self): | |
self.activation_checkpointing_enable() | |
def activation_checkpointing_enable(self): | |
self.mllm.model.language_model.gradient_checkpointing_enable() | |
def gradient_checkpointing_disable(self): | |
self.activation_checkpointing_disable() | |
def activation_checkpointing_disable(self): | |
self.mllm.model.language_model.gradient_checkpointing_disable() | |