fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
10 kB
import torch
import torch.nn as nn
from mmengine.model import BaseModel
from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict
class LisaModel(BaseModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,):
super(LisaModel, self).__init__()
self.mllm = BUILDER.build(mllm)
if self.mllm.use_llm_lora:
self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)
self.tokenizer = BUILDER.build(tokenizer)
self._add_special_tokens()
self.grounding_encoder = BUILDER.build(grounding_encoder)
self.grounding_encoder.requires_grad_(False)
self.grounding_encoder.mask_decoder.requires_grad_(True)
in_dim = self.mllm.model.config.llm_config.hidden_size
out_dim = self.grounding_encoder.mask_decoder.transformer_dim
self.text_hidden_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
)
self.loss_mask = BUILDER.build(loss_mask)
self.loss_dice = BUILDER.build(loss_dice)
def _add_special_tokens(self):
special_tokens = ['[SEG]']
num_new_tokens = self.tokenizer.add_tokens(
special_tokens, special_tokens=True)
if num_new_tokens > 0:
self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None):
pred_masks = []
for i, pred_embedding in enumerate(pred_embeddings):
sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder(
points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1)
)
sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype)
low_res_masks, _ = self.grounding_encoder.mask_decoder(
image_embeddings=image_embeddings[i].unsqueeze(0),
image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings,
multimask_output=False, )
pred_mask = self.grounding_encoder.postprocess_masks(
low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], )
pred_masks.append(pred_mask[:, 0])
return pred_masks
def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
return super().load_state_dict(state_dict, strict, assign)
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
from collections import OrderedDict
to_return = OrderedDict()
# Step 1. visual_encoder
if self.mllm.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.mllm.model.vision_model, state_dict=state_dict))
elif not self.mllm.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
# Step 2. LLM
if self.mllm.use_llm_lora:
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict))
elif not self.mllm.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'mlp1.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'grounding_encoder.mask_decoder.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'lm_head.weight' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'embed_tokens.weight' in k})
return to_return
def forward(self, data, data_samples=None, mode='loss'):
if mode == 'loss':
return self.compute_loss(data)
elif mode == 'predict':
return self.predict(data)
elif mode == 'tensor':
return self._forward(data)
else:
raise NotImplementedError
def compute_loss(self,data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
input_ids = data['input_ids']
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
g_pixel_values = [
torch.randn(3, 512, 1024).to(output.hidden_states[-1])
for _ in range(len(input_ids))]
ori_size_list = [(512, 1024) for _ in range(len(input_ids))]
seg_token_mask = torch.zeros_like(input_ids).bool()
seg_token_mask[:, -2] = True
else:
ori_size_list = [mask.shape[-2:] for mask in gt_masks]
seg_token_mask = input_ids == self.seg_token_idx
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values
])
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)
seg_token_mask = seg_token_mask[:, 1:]
seg_token_mask = torch.cat([
seg_token_mask,
seg_token_mask.new_zeros(seg_token_mask.shape[0], 1)], dim=-1)
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
pred_embeddings = hidden_states[seg_token_mask]
seg_token_counts = seg_token_mask.int().sum(-1)
pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_masks = self._generate_and_postprocess_masks(
pred_embeddings_list, image_embeddings, resize_list, ori_size_list)
if gt_masks is None:
return {
'loss_mask': pred_masks[0].sum() * 0.0,
'loss_dice': pred_masks[0].sum() * 0.0,
'llm_loss': output.loss,
}
bs = len(pred_masks)
loss_mask, loss_dice = 0, 0
for i in range(bs):
pred_mask = pred_masks[i]
gt_mask = gt_masks[i]
sam_loss_mask = self.loss_mask(pred_mask, gt_mask)
sam_loss_dice = self.loss_dice(pred_mask, gt_mask)
accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean()
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
loss_dict = {
'loss_mask': loss_mask / bs,
'loss_dice': loss_dice / bs,
'llm_loss': output.loss,
}
return loss_dict
def predict(self, data):
generation_config = dict(max_new_tokens=1024, do_sample=False)
eos_token_id = self.tokenizer.convert_tokens_to_ids('<|end|>')
generation_config['eos_token_id'] = eos_token_id
pixel_values = data.pop('pixel_values')
attention_mask = data.pop('attention_mask', None)
input_ids = data['input_ids']
generate_output = self.mllm.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict_in_generate=True,
**generation_config,
)
device = self.mllm.model.device
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1] for item in hidden_states[1:]] # remove input_ids
last_hidden_states = torch.cat(last_hidden_states, dim=1)
last_hidden_states = last_hidden_states[0] # remove batch dim
output_ids = generate_output.sequences[0][:-1] # remove batch dim and eos token
output_text = self.tokenizer.decode(output_ids)
seg_mask = output_ids == self.seg_token_idx
if seg_mask.sum() == 0:
return dict(
pred_mask_logits=None,
output_text=output_text,
)
seg_embeds = self.text_hidden_fcs(last_hidden_states[seg_mask])
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data['masks']
ori_size_list = [mask.shape[-2:] for mask in gt_masks]
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess(pixel.to(device)) for pixel in g_pixel_values
])
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)
pred_masks = self._generate_and_postprocess_masks(
[seg_embeds], image_embeddings, resize_list, ori_size_list)
return dict(
pred_mask_logits=pred_masks[0], # remove batch dim
output_text=output_text,
)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.mllm.model.language_model.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.mllm.model.language_model.gradient_checkpointing_disable()