fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
38.8 kB
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F
from third_parts.mmdet.models.losses import CrossEntropyLoss
from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict
from .lisa import LisaModel
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.tools.utils import get_stop_criteria
from transformers import GenerationConfig
from projects.llava_sam2.models.preprocess.image_resize import DirectResize
import numpy as np
from .internvl import InternVL_Slowfast
from .utils import dynamic_preprocess
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools import mask as _mask
from types import MethodType
from xtuner.model.utils import guess_load_checkpoint
from mmcv.ops import point_sample
from third_parts.mmdet.models.utils import get_uncertain_point_coords_with_randomness
class VideoLLaVASAMModel(LisaModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,
torch_dtype=torch.bfloat16,
pretrained_pth=None,
frozen_sam2_decoder=True,
special_tokens=None,
loss_sample_points=False,
num_points=12544,
# for slow fast arch
fast_pool=False,
fast_pool_size=4,
use_fast_supervision=False,
# for inference
phi3=True,
template=None,
# for arch selection
arch_type:Literal['intern_vl', 'qwen', 'llava']='intern_vl',
# for inference large model
split_model=False,
# ext
preprocessor=None,
# bs
bs:int=0,
):
super(LisaModel, self).__init__()
self.split_model = split_model
if split_model:
mllm.model_split = split_model
if special_tokens is None:
special_tokens = ['[SEG]']
self.special_tokens = special_tokens
if 'special_tokens' not in mllm.keys():
mllm.special_tokens = special_tokens
self.mllm = BUILDER.build(mllm)
self.arch_type = arch_type
self.fast_pool = fast_pool
self.fast_pool_size = fast_pool_size
if hasattr(self.mllm, '_post_init'):
self.mllm._post_init(
fast_pool_size=self.fast_pool_size,
fast_pool=self.fast_pool
)
else:
print("No _post_init() in mllm !!!")
self.tokenizer = BUILDER.build(tokenizer)
self._add_special_tokens()
self.grounding_encoder = BUILDER.build(grounding_encoder)
self.grounding_encoder.requires_grad_(False)
if not frozen_sam2_decoder:
self.grounding_encoder.sam2_model.sam_mask_decoder.requires_grad_(True)
if self.mllm.use_llm_lora:
if self.arch_type == 'intern_vl':
self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
elif self.arch_type == 'qwen':
self.mllm.model.model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.get_output_embeddings().weight.requires_grad_(True)
elif self.arch_type == 'llava':
self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
# self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
# self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)
if self.arch_type == 'intern_vl':
in_dim = self.mllm.model.config.llm_config.hidden_size
elif self.arch_type == 'qwen':
in_dim = self.mllm.model.config.hidden_size
elif self.arch_type == 'llava':
# for llava, the hidden size is in language model
in_dim = self.mllm.model.language_model.config.hidden_size
out_dim = self.grounding_encoder.hidden_dim
self.text_hidden_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
)
if use_fast_supervision:
self.text_exist_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, 1), nn.Dropout(0.0)
)
self.loss_mask = BUILDER.build(loss_mask)
self.loss_dice = BUILDER.build(loss_dice)
if use_fast_supervision:
self.loss_exists = BUILDER.build(dict(
type=CrossEntropyLoss,
use_sigmoid=True,
reduction='mean',
loss_weight=1.0)
)
self.torch_dtype = torch_dtype
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False)
print(f'Load pretrained weight from {pretrained_pth}')
self.loss_sample_points = loss_sample_points
self.num_points = num_points
self.oversample_ratio = 3.0
self.importance_sample_ratio = 0.75
if fast_pool:
self.fast_token_idx = self.tokenizer("<FAST_IMG_CONTEXT>", add_special_tokens=False).input_ids[0]
else:
self.fast_token_idx = None
self.use_fast_supervision = use_fast_supervision
self.phi3 = phi3
self.template = template
if preprocessor is None:
self.preprocessor = preprocessor
else:
self.preprocessor = BUILDER.build(preprocessor)
self.bs = bs
def _merge_lora(self):
# print('pre merge lora: ', self.mllm.model.language_model.base_model.model.get_input_embeddings().weight.shape)
try:
self.mllm.model.language_model = self.mllm.model.language_model.merge_and_unload()
except:
print("Skip language model, no LoRA in it !!!")
try:
self.mllm.model.vision_model = self.mllm.model.vision_model.merge_and_unload()
except:
print("Skip vision encoder, no LoRA in it !!!")
# print('after merge lora: ', self.mllm.model.language_model.get_input_embeddings().weight.shape)
return
def all_state_dict(self, *args, **kwargs):
state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
return state_dict
def activation_checkpointing_disable(self):
if self.arch_type == 'qwen':
self.mllm.model.model.gradient_checkpointing_disable()
else:
self.mllm.model.language_model.gradient_checkpointing_disable()
def _add_special_tokens(self):
special_tokens = self.special_tokens
_num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
# if not isinstance(self.mllm.model.language_model.get_output_embeddings(), nn.Linear):
# print("Change the lm_head to nn.Linear !!!")
# transposed = False
# old_lm_head = self.mllm.model.language_model.get_output_embeddings()
# old_num_tokens, old_lm_head_dim = (
# old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
# )
# new_lm_head_shape = (old_lm_head_dim, len(tokenizer)) if not transposed else (
# len(tokenizer), old_lm_head_dim)
# has_new_lm_head_bias = old_lm_head.bias is not None
# new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)
# new_lm_head.weight = old_lm_head.weight
# new_lm_head.bias = old_lm_head.bias
# self.mllm.model.language_model.set_output_embeddings(new_lm_head)
# this is already done in mllm
# if num_new_tokens > 0:
# self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))
# assert isinstance(self.mllm, InternVL_Slowfast)
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
def state_dict(self, *args, **kwargs):
state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
from collections import OrderedDict
to_return = OrderedDict()
# Step 1. visual_encoder
if self.mllm.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.mllm.model.vision_model, state_dict=state_dict))
raise NotImplementedError
elif not self.mllm.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
raise NotImplementedError
# Step 2. LLM
if self.mllm.use_llm_lora:
if self.arch_type == 'intern_vl':
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
)
elif self.arch_type == 'qwen':
to_return.update(
get_peft_model_state_dict(self.mllm.model.model, state_dict=state_dict)
)
elif self.arch_type == 'llava':
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
)
elif not self.mllm.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
raise NotImplementedError
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'mlp1.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'model.multi_modal_projector.' in k})
# Step 4. mask decoder of grounding model (SAM/SAM2)
to_return.update(
{k: v
for k, v in state_dict.items() if 'mask_decoder' in k})
# Step 5. others (fcs)
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_exist_fcs.' in k}
)
to_return.update(
{k: v
for k, v in state_dict.items() if 'lm_head.weight' in k or 'output' in k and 'sam2_model' not in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'embed_tokens.weight' in k or 'tok_embeddings' in k})
return to_return
def check_obj_number(self, pred_embeddings_list_video, gt_masks_video, fix_number=5):
assert len(pred_embeddings_list_video) == len(gt_masks_video)
ret_pred_embeddings_list_video = []
ret_gt_masks_video = []
for pred_mebeds, gt_masks in zip(pred_embeddings_list_video, gt_masks_video):
# assert len(pred_mebeds) == len(gt_masks)
if len(pred_mebeds) != len(gt_masks):
min_num = min(len(pred_mebeds), len(gt_masks))
pred_mebeds = pred_mebeds[:min_num]
gt_masks = gt_masks[:min_num]
if len(pred_mebeds) != fix_number:
if len(pred_mebeds) > fix_number:
_idxs = torch.randperm(pred_mebeds.shape[0])
_idxs = _idxs[:fix_number]
pred_mebeds = pred_mebeds[_idxs]
gt_masks = gt_masks[_idxs]
else:
n_repeat = fix_number // len(pred_mebeds) + 1
pred_mebeds = torch.cat([pred_mebeds] * n_repeat, dim=0)[:fix_number]
gt_masks = torch.cat([gt_masks] * n_repeat, dim=0)[:fix_number]
ret_pred_embeddings_list_video.append(pred_mebeds)
ret_gt_masks_video.append(gt_masks)
return ret_pred_embeddings_list_video, ret_gt_masks_video
def _get_pesudo_data(self, dtype, device):
assert self.bs > 0
g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
g_pixel_values = [g_pixel_values] * self.bs
frames_per_batch = [1] * self.bs
gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
gt_masks = [gt_masks] * self.bs
return g_pixel_values, frames_per_batch, gt_masks
def forward(self, data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
frames_per_batch = data.pop('frames_per_batch', None)
input_ids = data['input_ids']
fast_exists = data.pop('fast_exists', None)
# if self.arch_type == 'llava' and data.get('pixel_values', None) is not None:
# data['pixel_values'] = data['pixel_values'].to(self.torch_dtype)
if self.fast_pool:
output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
else:
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
# require zero seg datas
seg_valid = False
g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
dtype=self.torch_dtype,
device=input_ids.device,
)
else:
seg_valid = True
assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
# print('frmaes_per_batch: ', frames_per_batch)
ori_size_list = []
for i_bs, mask in enumerate(gt_masks):
mask_shape = mask.shape[-2:]
ori_size_list += [mask_shape] * frames_per_batch[i_bs]
seg_token_mask = input_ids == self.seg_token_idx
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
_zero = hidden_states.mean() * 0.0
if seg_valid:
pred_embeddings = hidden_states[seg_token_mask] + _zero
else:
pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero
seg_token_counts = seg_token_mask.int().sum(-1)
if not seg_valid:
seg_token_counts += 5
pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_embeddings_list = []
for item in pred_embeddings_list_:
if len(item) != 0:
pred_embeddings_list.append(item)
pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
pred_embeddings_list, frames_per_batch)
if not success:
raise NotImplementedError
if self.use_fast_supervision and fast_exists is not None:
# gt_exists = []
# for id_x, _fast_exists in enumerate(fast_exists):
# num_tot = _fast_exists.shape[0]
# num_conv = gt_masks[id_x].shape[0] // frames_per_batch[id_x]
# assert num_tot % num_conv == 0
# gt_exists.append(_fast_exists.reshape(num_conv, num_tot // num_conv))
fast_flag = input_ids == self.fast_token_idx
fast_tokens = output.hidden_states[-1][fast_flag]
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
gt_exists = torch.cat(fast_exists)
loss_exists = self.loss_exists(exists_logit, gt_exists)
else:
loss_exists = None
gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
pred_embeddings_list_video, gt_masks_video
)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
num_objs = pred_embeddings_list_video[0].shape[0]
num_frames = len(pred_embeddings_list_video)
language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))
gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
gt_masks = torch.cat(gt_masks, dim=0)
pred_masks = pred_masks.flatten(0, 1)
loss_mask, loss_dice = 0, 0
if len(pred_masks) != len(gt_masks):
# drop this data
print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
min_num = min(len(pred_masks), len(gt_masks))
pred_masks = pred_masks[:min_num]
gt_masks = gt_masks[:min_num]
seg_valid = False
if self.loss_sample_points:
sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(
sampled_pred_mask,
sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
sam_loss_mask = self.loss_mask(
sampled_pred_mask.reshape(-1),
sampled_gt_mask.reshape(-1),
avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
else:
sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
if not seg_valid:
_scale = 0.0
else:
_scale = 1.0
loss_mask = loss_mask * _scale
loss_dice = loss_dice * _scale
loss_dict = {
'loss_mask': loss_mask,
'loss_dice': loss_dice,
'llm_loss': output.loss,
}
if loss_exists is not None:
loss_dict['loss_exists'] = loss_exists
return loss_dict
def sample_points(self, mask_pred, gt_masks):
gt_masks = gt_masks.unsqueeze(1)
gt_masks = gt_masks.to(mask_pred)
mask_pred = mask_pred.unsqueeze(1)
# (N, 1, h, w)
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_pred.to(torch.float32), None, self.num_points,
self.oversample_ratio, self.importance_sample_ratio)
# shape (num_total_gts, h, w) -> (num_total_gts, num_points)
mask_point_targets = point_sample(
gt_masks.float(), points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_pred.to(torch.float32), points_coords.to(torch.float32)).squeeze(1)
return mask_point_preds.to(mask_pred.dtype), mask_point_targets.to(mask_pred.dtype)
def genetate_video_pred_embeddings(self, pred_embeddings_list, frames_per_batch):
if len(pred_embeddings_list) == len(frames_per_batch):
success = True
else:
success = False
print("len(pred_embeddings_list):{} is not equal to len(frames_per_batch):{} !!!".format(len(pred_embeddings_list), len(frames_per_batch)))
pred_embeddings_list_video = []
for pred_embedding_batch, frame_nums in zip(pred_embeddings_list, frames_per_batch):
pred_embeddings_list_video += [pred_embedding_batch] * frame_nums
return pred_embeddings_list_video, success
def process_video_gt_masks(self, gt_masks, frames_per_batch):
gt_masks_video = []
assert len(gt_masks) == len(frames_per_batch)
for gt_masks_batch, frames_num in zip(gt_masks, frames_per_batch):
N, H, W = gt_masks_batch.shape
assert N % frames_num == 0
gt_masks_batch = gt_masks_batch.reshape(
N // frames_num, frames_num, H, W)
for i in range(frames_num):
gt_masks_video.append(gt_masks_batch[:, i])
return gt_masks_video
def preparing_for_generation(self, metainfo, **kwargs):
# set stop criteria and generation configs for model
assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"
self.bot_name = 'BOT'
if 'template' in metainfo.keys():
template = metainfo['template']
else:
template = PROMPT_TEMPLATE['phi3_chat']
if self.template is None:
self.template = template
stop_words = []
stop_words += self.template.get('STOP_WORDS', [])
stop_criteria = get_stop_criteria(
tokenizer=self.tokenizer, stop_words=stop_words)
self.stop_criteria = stop_criteria
default_generation_kwargs = dict(
max_new_tokens=512,
do_sample=False,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=(
self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None
else self.tokenizer.eos_token_id
),
)
default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
self.gen_config = GenerationConfig(**default_generation_kwargs)
self.init_prediction_config = True
self.mllm.to(self.torch_dtype)
self.text_hidden_fcs.to(self.torch_dtype)
# if getattr(self, 'text_exist_fcs', None) is not None:
# self.text_exist_fcs.to(self.torch_dtype)
# for sam image processor
self.extra_image_processor = DirectResize(target_length=1024, )
# for multi image process
self.min_dynamic_patch = 1
if 'max_dynamic_patch' in metainfo.keys():
self.max_dynamic_patch = metainfo['max_dynamic_patch']
else:
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
self.image_size = 448
self.use_thumbnail = True
patch_size = 14
self.patch_size = patch_size
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
self.IMAGENET_STD = (0.229, 0.224, 0.225)
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
self.IMG_START_TOKEN = '<img>'
self.IMG_END_TOKEN = '</img>'
if self.arch_type == 'qwen':
self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
self.IMG_START_TOKEN = ''
self.IMG_END_TOKEN = ''
if self.preprocessor is None:
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.preprocessor = None
else:
self.transformer = None
# self.preprocessor = BUILDER.build(self.preprocessor)
self.VP_START_TOKEN = '<vp>'
self.VP_END_TOKEN = '</vp>'
# change phi3 prepare for generation fuction
if self.phi3:
self.mllm.model.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation, self.mllm.model.language_model)
return
def predict_video(self, pixel_values, text_prompts, **kwargs):
ori_h, ori_w = kwargs['ori_height'], kwargs['ori_width']
_input_ids = kwargs['input_ids']
g_pixel_values = kwargs.pop('g_pixel_values', None)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
fast_pixel_values = kwargs.pop('fast_pixel_values', None)
if fast_pixel_values is None:
fast_token_idx = None
else:
fast_token_idx = self.fast_token_idx
predictions = []
pred_masks = []
is_exists_list = []
for input_ids in _input_ids:
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
pixel_values = pixel_values.to(dtype=self.torch_dtype)
if fast_pixel_values is not None:
fast_pixel_values = fast_pixel_values.to(dtype=self.torch_dtype)
mm_inputs = {
'pixel_values': pixel_values,
'input_ids': input_ids,
'attention_mask': attention_mask,
'position_ids': None,
'past_key_values': None,
'labels': None,
'fast_pixel_values': fast_pixel_values,
'fast_token_idx': fast_token_idx,
}
if kwargs.get('image_grid_thw', None) is not None:
mm_inputs['image_grid_thw'] = kwargs['image_grid_thw']
generate_output = self.mllm.generate(
**mm_inputs,
generation_config=self.gen_config,
streamer=None,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria,
output_hidden_states=True,
return_dict_in_generate=True
)
predict = self.tokenizer.decode(generate_output.sequences[0], skip_special_tokens=False).strip()
# input_text = self.tokenizer.decode(mm_inputs['input_ids'][0], skip_special_tokens=False)
# print(input_text, generate_output.sequences[0], '\n', predict, self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0])
predictions.append(predict)
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1][0] for item in hidden_states]
last_hidden_states = torch.cat(last_hidden_states, dim=0)
seg_hidden_states = get_seg_hidden_states(
last_hidden_states, generate_output.sequences[0][:-1],
seg_id=self.seg_token_idx
)
if len(seg_hidden_states) == 0:
print("Warning, no [SEG] tokens !!!")
pred_masks.append(torch.zeros((g_pixel_values.shape[0], ori_h, ori_w), dtype=torch.int))
continue
elif len(seg_hidden_states) > 1:
print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
seg_hidden_states = seg_hidden_states[:1]
seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
seg_hidden_states = seg_hidden_states.to(dtype=torch.float32)
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
# TODO: change 5
if len(pixel_values) < 5:
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * pixel_values.shape[0])
else:
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * 5)
pred_mask = F.interpolate(
pred_mask,
size=(ori_h, ori_w),
mode='bilinear',
align_corners=False,
)
pred_mask = pred_mask[:, 0]
pred_mask = pred_mask.sigmoid() > 0.5
pred_mask = pred_mask.int()
# supervision
if self.use_fast_supervision and (input_ids == self.fast_token_idx).sum() > 0:
fast_flag = input_ids.squeeze(0) == self.fast_token_idx
len_out = generate_output.sequences[0][:-1].shape[0]
fast_tokens = last_hidden_states[:-len_out][fast_flag].to(dtype=torch.float32)
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
is_exists = exists_logit.squeeze(-1).sigmoid() > 0.5
is_exists_list.append(is_exists)
not_exists = torch.logical_not(is_exists)
if torch.any(not_exists):
pred_mask[not_exists] = pred_mask[not_exists] * 0
pred_masks.append(pred_mask)
assert len(pred_masks) == len(text_prompts)
ret_dict = {
'prediction': predictions,
'prediction_masks': [mask_to_rle(_item.cpu().numpy()) for _item in pred_masks],
}
if 'id' in kwargs.keys():
ret_dict['id'] = kwargs['id']
if len(is_exists_list) > 0:
ret_dict['is_exists'] = is_exists_list
return ret_dict
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
seg_mask = output_ids == seg_id
n_out = len(seg_mask)
return hidden_states[-n_out:][seg_mask]
def mask_to_rle(mask):
rle = []
for m in mask:
rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
rle[-1]['counts'] = rle[-1]['counts'].decode()
return rle
from transformers.cache_utils import Cache, DynamicCache
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs.update(
{
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
class VideoLLaVASAMModel_zero3(VideoLLaVASAMModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,
torch_dtype=torch.bfloat16,
pretrained_pth=None,
frozen_sam2_decoder=True,
special_tokens=['[SEG]', ],
loss_sample_points=False,
num_points=12544,
# for slow fast arch
fast_pool=False,
fast_pool_size=4,
arch_type='intern_vl',
# zero3
bs=1,
):
super(VideoLLaVASAMModel_zero3, self).__init__(
mllm=mllm,
tokenizer=tokenizer,
grounding_encoder=grounding_encoder,
loss_mask=loss_mask,
loss_dice=loss_dice,
torch_dtype=torch_dtype,
pretrained_pth=pretrained_pth,
frozen_sam2_decoder=frozen_sam2_decoder,
special_tokens=special_tokens,
loss_sample_points=loss_sample_points,
num_points=num_points,
# for slow fast arch
fast_pool=fast_pool,
fast_pool_size=fast_pool_size,
arch_type=arch_type,
)
self.bs = bs
def _get_pesudo_data(self, dtype, device):
g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
g_pixel_values = [g_pixel_values] * self.bs
frames_per_batch = [1] * self.bs
gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
gt_masks = [gt_masks] * self.bs
return g_pixel_values, frames_per_batch, gt_masks
def forward(self, data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
frames_per_batch = data.pop('frames_per_batch', None)
input_ids = data['input_ids']
if self.fast_pool:
output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
else:
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
# require zero seg datas
seg_valid = False
g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
dtype=self.torch_dtype,
device=input_ids.device,
)
else:
seg_valid = True
assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
# print('frmaes_per_batch: ', frames_per_batch)
ori_size_list = []
for i_bs, mask in enumerate(gt_masks):
mask_shape = mask.shape[-2:]
ori_size_list += [mask_shape] * frames_per_batch[i_bs]
seg_token_mask = input_ids == self.seg_token_idx
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
_zero = hidden_states.mean() * 0.0
if seg_valid:
pred_embeddings = hidden_states[seg_token_mask] + _zero
else:
pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero
seg_token_counts = seg_token_mask.int().sum(-1)
if not seg_valid:
seg_token_counts += 5
pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_embeddings_list = []
for item in pred_embeddings_list_:
if len(item) != 0:
pred_embeddings_list.append(item)
pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
pred_embeddings_list, frames_per_batch)
if not success:
raise NotImplementedError
# return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0}
gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
pred_embeddings_list_video, gt_masks_video
)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
# print(f"Done, {g_pixel_values.device} !!!\n\n")
num_objs = pred_embeddings_list_video[0].shape[0]
num_frames = len(pred_embeddings_list_video)
language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
# print(f"Done, {g_pixel_values.device} !!! {num_frames}---{num_objs}, {language_embeddings.shape}\n\n")
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))
gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
gt_masks = torch.cat(gt_masks, dim=0)
pred_masks = pred_masks.flatten(0, 1)
# pred_masks = torch.cat(pred_masks, dim=0)
bs = len(pred_masks)
loss_mask, loss_dice = 0, 0
if len(pred_masks) != len(gt_masks):
# drop this data
print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
min_num = min(len(pred_masks), len(gt_masks))
pred_masks = pred_masks[:min_num]
gt_masks = gt_masks[:min_num]
seg_valid = False
if self.loss_sample_points:
sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(
sampled_pred_mask,
sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
sam_loss_mask = self.loss_mask(
sampled_pred_mask.reshape(-1),
sampled_gt_mask.reshape(-1),
avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
else:
sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
if not seg_valid:
_scale = 0.0
else:
_scale = 1.0
loss_mask = loss_mask * _scale
loss_dice = loss_dice * _scale
loss_dict = {
'loss_mask': loss_mask,
'loss_dice': loss_dice,
'llm_loss': output.loss,
}
return loss_dict