Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import torch | |
from hydra import compose | |
from hydra.utils import instantiate | |
from omegaconf import OmegaConf | |
from mmengine.model import BaseModule | |
from vlm.utils import load_checkpoint_with_prefix, load_state_dict_to_model | |
BASE_DIR = 'work_dirs/ckpt' | |
class SAM2(BaseModule): | |
def __init__( | |
self, | |
cfg_path: str = "sam2_hiera_l.yaml", | |
ckpt_path: str = "sam2_hiera_large.pt", | |
hydra_overrides_extra=None, | |
apply_postprocessing=True, | |
): | |
super().__init__(init_cfg=None) | |
import third_parts.sam2 # noqa: F401 | |
if hydra_overrides_extra is None: | |
hydra_overrides_extra = [] | |
hydra_overrides = [ | |
## Extension: LLM prompt | |
"++model._target_=projects.llava_sam2.models.predictor.SAM2VideoPredictor", | |
] | |
if apply_postprocessing: | |
hydra_overrides_extra = hydra_overrides_extra.copy() | |
hydra_overrides_extra += [ | |
# dynamically fall back to multi-mask if the single mask is not stable | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", | |
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking | |
# "++model.binarize_mask_from_pts_for_mem_enc=true", | |
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) | |
# "++model.fill_hole_area=8", | |
] | |
hydra_overrides.extend(hydra_overrides_extra) | |
# Read config and init model | |
cfg = compose(config_name=cfg_path, overrides=hydra_overrides) | |
OmegaConf.resolve(cfg) | |
sam2_model = instantiate(cfg.model, _recursive_=True) | |
state_dict = load_checkpoint_with_prefix(os.path.join(BASE_DIR, ckpt_path)) | |
load_state_dict_to_model(sam2_model, state_dict) | |
self.sam2_model = sam2_model | |
self.hidden_dim = self.sam2_model.hidden_dim | |
self.img_mean = (0.485, 0.456, 0.406) | |
self.img_std = (0.229, 0.224, 0.225) | |
def inject_language_embd(self, inference_state, language_embd): | |
num_frame = len(language_embd) | |
num_obj = len(language_embd[0]) | |
mask_out = [] | |
for frame_idx in range(num_frame): | |
frame_mask_out = [] | |
for obj_idx in range(num_obj): | |
_language_embd = language_embd[frame_idx][obj_idx][None][None] | |
_, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd) | |
frame_mask_out.append(out_mask_logits) | |
frame_mask_out = torch.cat(frame_mask_out, dim=1) | |
mask_out.append(frame_mask_out) | |
mask_out = torch.cat(mask_out, dim=0) | |
return mask_out | |
def language_embd_inference(self, inference_state, language_embd): | |
num_frame = len(language_embd) | |
num_obj = len(language_embd[0]) | |
mask_out = [] | |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16): | |
for frame_idx in range(num_frame): | |
frame_mask_out = [] | |
for obj_idx in range(num_obj): | |
_language_embd = language_embd[frame_idx][obj_idx][None][None] | |
_, _, out_mask_logits = self.sam2_model.add_language_embd( | |
inference_state, | |
frame_idx, | |
obj_idx + 100, | |
_language_embd, | |
inference=True, | |
) | |
frame_mask_out.append(out_mask_logits) | |
frame_mask_out = torch.cat(frame_mask_out, dim=1) | |
mask_out.append(frame_mask_out) | |
mask_out = [] | |
for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state): | |
mask_out.append(out_mask_logits) | |
mask_out = torch.cat(mask_out, dim=0) | |
return mask_out | |
def get_sam2_embeddings(self, images): | |
return self.sam2_model.init_state(images) | |
def forward(self, batch): | |
raise NotImplementedError | |
def preprocess_image(self, image: torch.Tensor, dtype=torch.float32) -> torch.Tensor: | |
image = image / 255. | |
img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None] | |
img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None] | |
image -= img_mean | |
image /= img_std | |
return image | |