Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import torch | |
from hydra import compose | |
from hydra.utils import instantiate | |
from omegaconf import OmegaConf | |
from mmengine.model import BaseModule | |
from vlm.utils import load_checkpoint_with_prefix, load_state_dict_to_model | |
BASE_DIR = 'pretrained/' | |
class SAM2TrainRunner(BaseModule): | |
def __init__( | |
self, | |
cfg_path: str = "sam2_hiera_l.yaml", | |
ckpt_path: str = "sam2_hiera_large.pt", | |
hydra_overrides_extra=None, | |
apply_postprocessing=True, | |
): | |
super().__init__(init_cfg=None) | |
import third_parts.sam2 # noqa: F401 | |
if hydra_overrides_extra is None: | |
hydra_overrides_extra = [] | |
hydra_overrides = [ | |
## Extension: LLM prompt | |
"++model._target_=projects.llava_sam2.models.extension.SAM2Base", | |
] | |
if apply_postprocessing: | |
hydra_overrides_extra = hydra_overrides_extra.copy() | |
hydra_overrides_extra += [ | |
# dynamically fall back to multi-mask if the single mask is not stable | |
# "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", | |
# "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", | |
# "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", | |
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking | |
# "++model.binarize_mask_from_pts_for_mem_enc=true", | |
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) | |
# "++model.fill_hole_area=8", | |
] | |
hydra_overrides.extend(hydra_overrides_extra) | |
# Read config and init model | |
cfg = compose(config_name=cfg_path, overrides=hydra_overrides) | |
OmegaConf.resolve(cfg) | |
sam2_model = instantiate(cfg.model, _recursive_=True) | |
state_dict = load_checkpoint_with_prefix(os.path.join(BASE_DIR, ckpt_path)) | |
load_state_dict_to_model(sam2_model, state_dict) | |
self.sam2_model = sam2_model | |
self.hidden_dim = self.sam2_model.hidden_dim | |
self.img_mean = (0.485, 0.456, 0.406) | |
self.img_std = (0.229, 0.224, 0.225) | |
def preprocess_image(self, image: torch.Tensor) -> torch.Tensor: | |
image = image / 255. | |
img_mean = torch.tensor(self.img_mean, dtype=image.dtype, device=image.device)[:, None, None] | |
img_std = torch.tensor(self.img_std, dtype=image.dtype, device=image.device)[:, None, None] | |
image -= img_mean | |
image /= img_std | |
return image | |
def inject_language_embd(self, sam_states, language_embd, nf_nobj=None): | |
high_res_features = [ | |
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) | |
for x, s in zip(sam_states['current_vision_feats'][:-1], sam_states['feat_sizes'][:-1]) | |
] | |
B = sam_states['current_vision_feats'][-1].size(1) # batch size on this frame | |
C = self.hidden_dim | |
H, W = sam_states['feat_sizes'][-1] | |
if self.sam2_model.directly_add_no_mem_embed: | |
# directly add no-mem embedding (instead of using the transformer encoder) | |
pix_feat_with_mem = sam_states['current_vision_feats'][-1] + self.sam2_model.no_mem_embed | |
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) | |
else: | |
raise NotImplementedError("directly add no memory embedding is not implemented") | |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16): | |
_, _, _, low_res_masks, high_res_masks, obj_ptr, _, = self.sam2_model._forward_sam_heads( | |
backbone_features=pix_feat_with_mem, | |
point_inputs=None, | |
mask_inputs=None, | |
high_res_features=high_res_features, | |
multimask_output=self.sam2_model._use_multimask(is_init_cond_frame=True, point_inputs=None), | |
# Inject language Embed if possible | |
language_embd=language_embd, | |
) | |
if nf_nobj is not None: | |
pred_masks = low_res_masks.squeeze(1) | |
pred_masks = pred_masks.unflatten(0, nf_nobj) | |
else: | |
pred_masks = low_res_masks | |
return pred_masks | |
def get_sam2_embeddings(self, images, expand_size=1): | |
# Step 1: inference the backbone with the images | |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16): | |
feats = self.sam2_model.forward_image(images) | |
if expand_size > 1: | |
# feats['vision_features'] = feats['vision_features'][:, None].expand(-1, expand_size, -1, -1, -1).flatten(0, 1) | |
for i, feat in enumerate(feats["backbone_fpn"]): | |
feats["backbone_fpn"][i] = feat[:, None].expand(-1, expand_size, -1, -1, -1).flatten(0, 1) | |
for i, pos in enumerate(feats["vision_pos_enc"]): | |
pos = pos[:, None].expand(-1, expand_size, -1, -1, -1).flatten(0, 1) | |
feats["vision_pos_enc"][i] = pos | |
# Step 2: Process the features to output | |
_, current_vision_feats, current_vision_pos_embeds, feat_sizes = self.sam2_model._prepare_backbone_features(feats) | |
return { | |
"current_vision_feats": current_vision_feats, | |
"current_vision_pos_embeds": current_vision_pos_embeds, | |
"feat_sizes": feat_sizes, | |
} | |
def forward(self, batch): | |
raise NotImplementedError | |