fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
13.9 kB
import copy
import random
import glob
import json
import logging
import os
from typing import Literal
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.utils import IGNORE_INDEX
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from third_parts.mmdet.datasets.refcoco import RefCocoDataset
from .utils import dynamic_preprocess
class ReferSegmDataset(RefCocoDataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
data_root,
ann_file=None,
split_file=None,
special_tokens=None,
prompt_template=None,
extra_image_processor=None,
data_prefix=dict(img_path='train2014/'),
tokenizer=None,
max_length=2048,
num_classes_per_sample=3,
single_image_mode=False,
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
preprocessor=None,
**kwargs):
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
pipeline=None,
ann_file=ann_file,
split_file=split_file,
**kwargs,
)
self.begin_str = f'{DEFAULT_IMAGE_TOKEN}\n'
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.arch_type = arch_type
if self.arch_type == 'qwen':
self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
self.IMG_START_TOKEN = '<|vision_start|>'
self.IMG_END_TOKEN = '<|vision_end|>'
elif self.arch_type == 'llava':
self.IMG_CONTEXT_TOKEN = '<image>'
self.IMG_START_TOKEN = ''
self.IMG_END_TOKEN = ''
self.tokenizer = BUILDER.build(tokenizer)
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.image_folder = data_root
self.template = prompt_template
self.max_length = max_length
if self.arch_type == 'intern_vl':
# self._system = '你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。'
self._system = ''
self.template['INSTRUCTION'] = '<|user|>\n{input}<|end|><|assistant|>\n'
elif self.arch_type == 'qwen':
self._system = ''
elif self.arch_type == 'llava':
self._system = ''
self.num_classes_per_sample = num_classes_per_sample
self.min_dynamic_patch = 1
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
if self.arch_type == 'llava':
self.downsample_ratio = 1
self.image_size = 448
if self.arch_type == 'llava':
self.image_size = 336
self.use_thumbnail = True
patch_size = 14
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
if preprocessor is None:
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.preprocessor = None
else:
self.transformer = None
self.preprocessor = BUILDER.build(preprocessor)
self.arch_type = arch_type
self.single_image_mode = single_image_mode
self._max_refetch = 1000
print("Image RES dataset, include {} items.".format(len(self)))
@property
def modality_length(self):
import pickle
length_list = []
for idx in range(len(self)):
length_list.append(100)
return length_list
def _parse_annotations(self, ann_info):
image_path = ann_info['img_path']
image = Image.open(image_path).convert('RGB')
width, height = image.size
masks, phrases = [], []
instances, text = ann_info['instances'], ann_info['text']
# index = np.random.choice(range(len(instances)), min(
# len(instances), self.num_classes_per_sample))
index = np.random.choice(range(len(instances)), self.num_classes_per_sample, replace=True)
for idx in index:
inst = instances[idx]
phrase = text[idx].lower()
if '.' == phrase[-1]:
phrase = phrase[:-1]
phrases.append(phrase)
binary_mask = np.zeros((height, width), dtype=np.uint8)
for seg in inst["mask"]:
rles = mask_utils.frPyObjects([seg], height, width)
m = mask_utils.decode(rles)
m = m.astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
conversation = []
for i, phrase in enumerate(phrases):
question = random.choice(SEG_QUESTIONS).format(class_name=phrase)
if i == 0:
question = self.begin_str + question
conversation.append({'from': 'human', 'value': question})
conversation.append({'from': 'gpt', 'value': random.choice(ANSWER_LIST)})
masks = torch.stack([torch.from_numpy(mask) for mask in masks], dim=0)
ann_info.update({
'masks': masks,
'conversations': conversation,
'image': image_path
})
return ann_info
def prepare_data(self, index):
data_dict = super().prepare_data(index)
data_dict = self._parse_annotations(data_dict)
if data_dict is None:
return None
out_data_dict = {}
if 'masks' in data_dict:
out_data_dict['masks'] = data_dict['masks']
if data_dict.get('image', None) is not None:
image_file = data_dict['image']
try:
image = Image.open(image_file).convert('RGB')
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
out_data_dict['g_pixel_values'] = g_pixel_values
if self.single_image_mode:
images = [image]
else:
images = dynamic_preprocess(image, self.min_dynamic_patch,
self.max_dynamic_patch,
self.image_size, self.use_thumbnail)
if self.preprocessor is not None:
if self.arch_type == 'qwen':
_data_dict = self.preprocessor(images, do_resize=True)
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
elif self.arch_type == 'llava':
_data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size))
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token
else:
raise NotImplementedError
out_data_dict.update(_data_dict)
else:
pixel_values = [self.transformer(image) for image in images]
pixel_values = torch.stack(pixel_values)
out_data_dict['pixel_values'] = pixel_values
num_image_tokens = pixel_values.shape[0] * self.patch_token
image_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
token_dict = self.get_inputid_labels(data_dict['conversations'], image_token_str)
out_data_dict.update(token_dict)
else:
token_dict = self.get_inputid_labels(data_dict['conversations'], None)
out_data_dict.update(token_dict)
out_data_dict['pixel_values'] = torch.zeros(1, 3, self.image_size, self.image_size)
return out_data_dict
def get_inputid_labels(self, conversations, image_token_str) -> dict:
input = ''
out_conversation = []
while conversations and conversations[0]['from'] == 'gpt':
# Skip the first one if it is from gpt
conversations = conversations[1:]
for msg in conversations:
if msg['from'] == 'human':
if image_token_str is None and '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', '')
if '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
input += msg['value'].strip()
elif msg['from'] == 'gpt':
out_conversation.append({
'input': input,
'output': msg['value'].strip()
})
input = ''
else:
raise NotImplementedError
input_ids, labels = [], []
for i, single_turn_conversation in enumerate(out_conversation):
input = single_turn_conversation.get('input', '')
if input is None:
input = ''
input_text = self.template.INSTRUCTION.format(
input=input, round=i + 1)
if i == 0:
if self._system != '' and self._system is not None:
system = self.template.SYSTEM.format(system=self._system)
input_text = system + input_text
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=True)
else:
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=False)
input_ids += input_encode
labels += [IGNORE_INDEX] * len(input_encode)
output_text = single_turn_conversation.get('output', '')
if self.template.get('SUFFIX', None):
output_text += self.template.SUFFIX
output_encode = self.tokenizer.encode(
output_text, add_special_tokens=False)
input_ids += output_encode
labels += copy.deepcopy(output_encode)
if len(input_ids) > self.max_length:
input_ids = input_ids[:self.max_length]
labels = labels[:self.max_length]
# print('len_ids: ', len(input_ids))
return {'input_ids': input_ids, 'labels': labels}
def __getitem__(self, index):
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = ReferSegmDataset(
tokenizer=tokenizer,
special_tokens=['[SEG]'],
extra_image_processor=extra_image_processor,
prompt_template=prompt_template,
data_root='data/coco/',
data_prefix=dict(img_path='train2014/'),
ann_file='refcoco+/instances.json',
split_file='refcoco+/refs(unc).p',
)
for i in range(1000):
dataset[i]