Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import random | |
import glob | |
import json | |
import logging | |
import os | |
from typing import Literal | |
import torch | |
from mmengine import print_log | |
from mmengine.config import Config, ConfigDict | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import numpy as np | |
import torch.nn.functional as F | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from pycocotools.coco import COCO | |
from pycocotools import mask as mask_utils | |
from xtuner.registry import BUILDER | |
from xtuner.utils import IGNORE_INDEX | |
from xtuner.dataset.utils import encode_fn | |
from xtuner.dataset.map_fns import llava_map_fn | |
from projects.glamm.datasets.utils.utils import expand2square | |
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST | |
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from third_parts.mmdet.datasets.refcoco import RefCocoDataset | |
from .utils import dynamic_preprocess | |
class ReferSegmDataset(RefCocoDataset): | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' | |
IMG_START_TOKEN = '<img>' | |
IMG_END_TOKEN = '</img>' | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def __init__(self, | |
data_root, | |
ann_file=None, | |
split_file=None, | |
special_tokens=None, | |
prompt_template=None, | |
extra_image_processor=None, | |
data_prefix=dict(img_path='train2014/'), | |
tokenizer=None, | |
max_length=2048, | |
num_classes_per_sample=3, | |
single_image_mode=False, | |
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl', | |
preprocessor=None, | |
**kwargs): | |
super().__init__( | |
data_root=data_root, | |
data_prefix=data_prefix, | |
pipeline=None, | |
ann_file=ann_file, | |
split_file=split_file, | |
**kwargs, | |
) | |
self.begin_str = f'{DEFAULT_IMAGE_TOKEN}\n' | |
if extra_image_processor is not None: | |
self.extra_image_processor = BUILDER.build(extra_image_processor) | |
self.arch_type = arch_type | |
if self.arch_type == 'qwen': | |
self.IMG_CONTEXT_TOKEN = '<|image_pad|>' | |
self.IMG_START_TOKEN = '<|vision_start|>' | |
self.IMG_END_TOKEN = '<|vision_end|>' | |
elif self.arch_type == 'llava': | |
self.IMG_CONTEXT_TOKEN = '<image>' | |
self.IMG_START_TOKEN = '' | |
self.IMG_END_TOKEN = '' | |
self.tokenizer = BUILDER.build(tokenizer) | |
if special_tokens is not None: | |
self.tokenizer.add_tokens(special_tokens, special_tokens=True) | |
self.image_folder = data_root | |
self.template = prompt_template | |
self.max_length = max_length | |
if self.arch_type == 'intern_vl': | |
# self._system = '你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。' | |
self._system = '' | |
self.template['INSTRUCTION'] = '<|user|>\n{input}<|end|><|assistant|>\n' | |
elif self.arch_type == 'qwen': | |
self._system = '' | |
elif self.arch_type == 'llava': | |
self._system = '' | |
self.num_classes_per_sample = num_classes_per_sample | |
self.min_dynamic_patch = 1 | |
self.max_dynamic_patch = 12 | |
self.downsample_ratio = 0.5 | |
if self.arch_type == 'llava': | |
self.downsample_ratio = 1 | |
self.image_size = 448 | |
if self.arch_type == 'llava': | |
self.image_size = 336 | |
self.use_thumbnail = True | |
patch_size = 14 | |
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) | |
if preprocessor is None: | |
self.transformer = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) | |
]) | |
self.preprocessor = None | |
else: | |
self.transformer = None | |
self.preprocessor = BUILDER.build(preprocessor) | |
self.arch_type = arch_type | |
self.single_image_mode = single_image_mode | |
self._max_refetch = 1000 | |
print("Image RES dataset, include {} items.".format(len(self))) | |
def modality_length(self): | |
import pickle | |
length_list = [] | |
for idx in range(len(self)): | |
length_list.append(100) | |
return length_list | |
def _parse_annotations(self, ann_info): | |
image_path = ann_info['img_path'] | |
image = Image.open(image_path).convert('RGB') | |
width, height = image.size | |
masks, phrases = [], [] | |
instances, text = ann_info['instances'], ann_info['text'] | |
# index = np.random.choice(range(len(instances)), min( | |
# len(instances), self.num_classes_per_sample)) | |
index = np.random.choice(range(len(instances)), self.num_classes_per_sample, replace=True) | |
for idx in index: | |
inst = instances[idx] | |
phrase = text[idx].lower() | |
if '.' == phrase[-1]: | |
phrase = phrase[:-1] | |
phrases.append(phrase) | |
binary_mask = np.zeros((height, width), dtype=np.uint8) | |
for seg in inst["mask"]: | |
rles = mask_utils.frPyObjects([seg], height, width) | |
m = mask_utils.decode(rles) | |
m = m.astype(np.uint8) | |
binary_mask += m.squeeze() | |
masks.append(binary_mask) | |
conversation = [] | |
for i, phrase in enumerate(phrases): | |
question = random.choice(SEG_QUESTIONS).format(class_name=phrase) | |
if i == 0: | |
question = self.begin_str + question | |
conversation.append({'from': 'human', 'value': question}) | |
conversation.append({'from': 'gpt', 'value': random.choice(ANSWER_LIST)}) | |
masks = torch.stack([torch.from_numpy(mask) for mask in masks], dim=0) | |
ann_info.update({ | |
'masks': masks, | |
'conversations': conversation, | |
'image': image_path | |
}) | |
return ann_info | |
def prepare_data(self, index): | |
data_dict = super().prepare_data(index) | |
data_dict = self._parse_annotations(data_dict) | |
if data_dict is None: | |
return None | |
out_data_dict = {} | |
if 'masks' in data_dict: | |
out_data_dict['masks'] = data_dict['masks'] | |
if data_dict.get('image', None) is not None: | |
image_file = data_dict['image'] | |
try: | |
image = Image.open(image_file).convert('RGB') | |
except Exception as e: | |
print(f'Error: {e}', flush=True) | |
print_log(f'Error: {e}', logger='current') | |
return None | |
if hasattr(self, 'extra_image_processor'): | |
g_image = np.array(image) # for grounding | |
g_image = self.extra_image_processor.apply_image(g_image) | |
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() | |
out_data_dict['g_pixel_values'] = g_pixel_values | |
if self.single_image_mode: | |
images = [image] | |
else: | |
images = dynamic_preprocess(image, self.min_dynamic_patch, | |
self.max_dynamic_patch, | |
self.image_size, self.use_thumbnail) | |
if self.preprocessor is not None: | |
if self.arch_type == 'qwen': | |
_data_dict = self.preprocessor(images, do_resize=True) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int) | |
num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2)) | |
elif self.arch_type == 'llava': | |
_data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size)) | |
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0) | |
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) | |
num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token | |
else: | |
raise NotImplementedError | |
out_data_dict.update(_data_dict) | |
else: | |
pixel_values = [self.transformer(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
out_data_dict['pixel_values'] = pixel_values | |
num_image_tokens = pixel_values.shape[0] * self.patch_token | |
image_token_str = f'{self.IMG_START_TOKEN}' \ | |
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ | |
f'{self.IMG_END_TOKEN}' | |
token_dict = self.get_inputid_labels(data_dict['conversations'], image_token_str) | |
out_data_dict.update(token_dict) | |
else: | |
token_dict = self.get_inputid_labels(data_dict['conversations'], None) | |
out_data_dict.update(token_dict) | |
out_data_dict['pixel_values'] = torch.zeros(1, 3, self.image_size, self.image_size) | |
return out_data_dict | |
def get_inputid_labels(self, conversations, image_token_str) -> dict: | |
input = '' | |
out_conversation = [] | |
while conversations and conversations[0]['from'] == 'gpt': | |
# Skip the first one if it is from gpt | |
conversations = conversations[1:] | |
for msg in conversations: | |
if msg['from'] == 'human': | |
if image_token_str is None and '<image>' in msg['value']: | |
msg['value'] = msg['value'].replace('<image>', '') | |
if '<image>' in msg['value']: | |
msg['value'] = msg['value'].replace('<image>', image_token_str).strip() | |
input += msg['value'].strip() | |
elif msg['from'] == 'gpt': | |
out_conversation.append({ | |
'input': input, | |
'output': msg['value'].strip() | |
}) | |
input = '' | |
else: | |
raise NotImplementedError | |
input_ids, labels = [], [] | |
for i, single_turn_conversation in enumerate(out_conversation): | |
input = single_turn_conversation.get('input', '') | |
if input is None: | |
input = '' | |
input_text = self.template.INSTRUCTION.format( | |
input=input, round=i + 1) | |
if i == 0: | |
if self._system != '' and self._system is not None: | |
system = self.template.SYSTEM.format(system=self._system) | |
input_text = system + input_text | |
input_encode = self.tokenizer.encode( | |
input_text, add_special_tokens=True) | |
else: | |
input_encode = self.tokenizer.encode( | |
input_text, add_special_tokens=False) | |
input_ids += input_encode | |
labels += [IGNORE_INDEX] * len(input_encode) | |
output_text = single_turn_conversation.get('output', '') | |
if self.template.get('SUFFIX', None): | |
output_text += self.template.SUFFIX | |
output_encode = self.tokenizer.encode( | |
output_text, add_special_tokens=False) | |
input_ids += output_encode | |
labels += copy.deepcopy(output_encode) | |
if len(input_ids) > self.max_length: | |
input_ids = input_ids[:self.max_length] | |
labels = labels[:self.max_length] | |
# print('len_ids: ', len(input_ids)) | |
return {'input_ids': input_ids, 'labels': labels} | |
def __getitem__(self, index): | |
for _ in range(self._max_refetch + 1): | |
data = self.prepare_data(index) | |
# Broken images may cause the returned data to be None | |
if data is None: | |
index = self._rand_another() | |
continue | |
return data | |
if __name__ == '__main__': | |
from transformers import CLIPImageProcessor, AutoTokenizer | |
from third_parts.segment_anything.utils.transforms import ResizeLongestSide | |
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained' | |
llm_name_or_path = 'lmsys/vicuna-7b-v1.5' | |
tokenizer = dict( | |
type=AutoTokenizer.from_pretrained, | |
pretrained_model_name_or_path=llm_name_or_path) | |
image_processor = dict( | |
type=CLIPImageProcessor.from_pretrained, | |
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336') | |
extra_image_processor = dict( | |
type=ResizeLongestSide, | |
target_length=1024, | |
) | |
from xtuner.utils.templates import PROMPT_TEMPLATE | |
prompt_template = PROMPT_TEMPLATE.vicuna | |
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn | |
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn | |
dataset = ReferSegmDataset( | |
tokenizer=tokenizer, | |
special_tokens=['[SEG]'], | |
extra_image_processor=extra_image_processor, | |
prompt_template=prompt_template, | |
data_root='data/coco/', | |
data_prefix=dict(img_path='train2014/'), | |
ann_file='refcoco+/instances.json', | |
split_file='refcoco+/refs(unc).p', | |
) | |
for i in range(1000): | |
dataset[i] |