fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
20 kB
import copy
import random
import glob
import json
import logging
import os
from typing import Literal
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.utils import IGNORE_INDEX
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from .utils import dynamic_preprocess
class InfinityMMDataset(Dataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
tokenizer,
data_path,
prompt_template,
special_tokens=None,
max_length=8192,
offline_save_path='./work_dirs/infinityMM.json',
):
self.offline_save_path = offline_save_path
self.tokenizer = BUILDER.build(tokenizer)
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self._system = ''
self.template = prompt_template
self.max_length = max_length
self.min_dynamic_patch = 1
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
self.image_size = 448
self.use_thumbnail = True
patch_size = 14
self.patch_token = int(
(self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB')
if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size),
interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.data = self._load_annotations(data_path)
self._max_refetch = 1000
def _load_annotations(self, data_path):
if os.path.exists(self.offline_save_path):
with open(self.offline_save_path, 'r') as f:
ret = json.load(f)
print(f"Load InfinityMM file list from {self.offline_save_path}, {len(ret)} items !!!")
return ret
sub_folders = []
for sub_folder in os.listdir(data_path):
if '.' not in sub_folder:
# a folder
if "LVIS_111k" in sub_folder:
# special case, have subsub folder
subsub_folders = os.listdir(os.path.join(data_path, sub_folder))
for subsub_folder in subsub_folders:
sub_folders.append(os.path.join(data_path, sub_folder, subsub_folder))
else:
sub_folders.append(os.path.join(data_path, sub_folder))
all_jsons = []
for sub_folder in sub_folders:
print(f"Processing {sub_folder} !!!")
_files = os.listdir(sub_folder)
_num = 0
for _file in _files:
if '.json' in _file:
_json_path = os.path.join(sub_folder, _file)
_num += 1
all_jsons.append(os.path.join(sub_folder, _file))
print(f"Finished {sub_folder} has {_num} items.")
with open(self.offline_save_path, 'w') as f:
json.dump(all_jsons, f)
return all_jsons
def __getitem__(self, index):
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
def __len__(self):
return len(self.data)
@property
def modality_length(self):
self.group_length = []
for data_dict in self.data:
self.group_length.append(100)
return self.group_length
@property
def length(self):
group_length = np.array(self.group_length)
group_length = np.abs(group_length).tolist()
return group_length
def prepare_data(self, index):
data_path = self.data[index]
with open(data_path, 'r') as f:
data_dict = json.load(f)
if 'image' in data_dict.keys():
data_dict['image'] = data_path.replace('.json', '.jpg')
if data_dict is None:
return None
out_data_dict = {}
if data_dict.get('image', None) is not None:
image_file = data_dict['image']
try:
image = Image.open(image_file).convert('RGB')
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
images = dynamic_preprocess(image, self.min_dynamic_patch,
self.max_dynamic_patch,
self.image_size, self.use_thumbnail)
pixel_values = [self.transformer(image) for image in images]
pixel_values = torch.stack(pixel_values)
out_data_dict['pixel_values'] = pixel_values
num_image_tokens = pixel_values.shape[0] * self.patch_token
image_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
token_dict = self.get_inputid_labels(
data_dict['conversations'], image_token_str)
out_data_dict.update(token_dict)
else:
token_dict = self.get_inputid_labels(
data_dict['conversations'], None)
out_data_dict.update(token_dict)
out_data_dict['pixel_values'] = torch.zeros(
1, 3, self.image_size, self.image_size)
return out_data_dict
def _rand_another(self) -> int:
return np.random.randint(0, len(self.data))
def get_inputid_labels(self, conversations, image_token_str) -> dict:
input = ''
out_conversation = []
while conversations and conversations[0]['from'] == 'gpt':
# Skip the first one if it is from gpt
conversations = conversations[1:]
for i, msg in enumerate(conversations):
if msg['from'] == 'human':
# change to 1 image
if '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>\n', '').replace('<image>', '')
if i == 0:
msg['value'] = "<image>\n" + msg['value']
if image_token_str is None and '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', '')
if '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
input += msg['value'].strip()
elif msg['from'] == 'gpt':
out_conversation.append({
'input': input,
'output': msg['value'].strip()
})
input = ''
else:
raise NotImplementedError
input_ids, labels = [], []
for i, single_turn_conversation in enumerate(out_conversation):
input = single_turn_conversation.get('input', '')
if input is None:
input = ''
input_text = self.template.INSTRUCTION.format(
input=input, round=i + 1)
if i == 0:
if self._system != '' and self._system is not None:
system = self.template.SYSTEM.format(system=self._system)
input_text = system + input_text
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=True)
else:
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=False)
input_ids += input_encode
labels += [IGNORE_INDEX] * len(input_encode)
output_text = single_turn_conversation.get('output', '')
if self.template.get('SUFFIX', None):
output_text += self.template.SUFFIX
output_encode = self.tokenizer.encode(
output_text, add_special_tokens=False)
input_ids += output_encode
labels += copy.deepcopy(output_encode)
if len(input_ids) > self.max_length:
input_ids = input_ids[:self.max_length]
labels = labels[:self.max_length]
print_log(
f'Warning: input_ids length({len(input_ids)}) '
f'is longer than max_length, cut to {self.max_length}',
logger='current')
return {'input_ids': input_ids, 'labels': labels}
class LLaVADataset(Dataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
tokenizer,
data_path,
prompt_template,
special_tokens=None,
image_folder=None,
max_length=8192,
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
preprocessor=None,
skip_pure_text=False,
):
self.tokenizer = BUILDER.build(tokenizer)
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.image_folder = image_folder
self.template = prompt_template
self.max_length = max_length
self._system = ''
self.arch_type = arch_type
self.min_dynamic_patch = 1
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
if self.arch_type == 'llava':
self.downsample_ratio = 1
self.image_size = 448
if self.arch_type == 'llava':
self.image_size = 336
self.use_thumbnail = True
patch_size = 14
self.patch_token = int(
(self.image_size // patch_size)**2 * (self.downsample_ratio**2))
if self.arch_type == 'qwen':
self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
self.IMG_START_TOKEN = '<|vision_start|>'
self.IMG_END_TOKEN = '<|vision_end|>'
elif self.arch_type == 'llava':
self.IMG_CONTEXT_TOKEN = '<image>'
self.IMG_START_TOKEN = ''
self.IMG_END_TOKEN = ''
if preprocessor is None:
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.preprocessor = None
else:
self.transformer = None
self.preprocessor = BUILDER.build(preprocessor)
self.data = self._load_annotations(data_path, image_folder)
self._max_refetch = 1000
self.skip_pure_text = skip_pure_text
def _load_annotations(self, data_path, image_folder=None):
data = json.load(open(data_path))
return data
def __getitem__(self, index):
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
def __len__(self):
return len(self.data)
@property
def modality_length(self):
self.group_length = []
for data_dict in self.data:
self.group_length.append(100)
return self.group_length
@property
def length(self):
group_length = np.array(self.group_length)
group_length = np.abs(group_length).tolist()
return group_length
def prepare_data(self, index):
data_dict: dict = self.data[index]
if data_dict is None:
return None
out_data_dict = {}
if self.skip_pure_text and data_dict.get('image', None) is None:
return None
if data_dict.get('image', None) is not None:
image_file = os.path.join(self.image_folder, data_dict['image'])
try:
image = Image.open(image_file).convert('RGB')
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
if self.preprocessor is not None:
# images = dynamic_preprocess(image, self.min_dynamic_patch,
# self.max_dynamic_patch,
# self.image_size, self.use_thumbnail)
images = [image]
if self.arch_type == 'qwen':
_data_dict = self.preprocessor(images, do_resize=True)
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
elif self.arch_type == 'llava':
_data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size))
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token
else:
raise NotImplementedError
out_data_dict.update(_data_dict)
else:
images = dynamic_preprocess(image, self.min_dynamic_patch,
self.max_dynamic_patch,
self.image_size, self.use_thumbnail)
pixel_values = [self.transformer(image) for image in images]
pixel_values = torch.stack(pixel_values)
out_data_dict['pixel_values'] = pixel_values
num_image_tokens = pixel_values.shape[0] * self.patch_token
image_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
token_dict = self.get_inputid_labels(
data_dict['conversations'], image_token_str)
out_data_dict.update(token_dict)
else:
token_dict = self.get_inputid_labels(
data_dict['conversations'], None)
out_data_dict.update(token_dict)
out_data_dict['pixel_values'] = torch.zeros(
1, 3, self.image_size, self.image_size)
return out_data_dict
def _rand_another(self) -> int:
return np.random.randint(0, len(self.data))
def get_inputid_labels(self, conversations, image_token_str) -> dict:
input = ''
out_conversation = []
while conversations and conversations[0]['from'] == 'gpt':
# Skip the first one if it is from gpt
conversations = conversations[1:]
for msg in conversations:
if msg['from'] == 'human':
if image_token_str is None and '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', '')
if '<image>' in msg['value']:
msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
input += msg['value'].strip()
elif msg['from'] == 'gpt':
out_conversation.append({
'input': input,
'output': msg['value'].strip()
})
input = ''
else:
raise NotImplementedError
input_ids, labels = [], []
for i, single_turn_conversation in enumerate(out_conversation):
input = single_turn_conversation.get('input', '')
if input is None:
input = ''
input_text = self.template.INSTRUCTION.format(
input=input, round=i + 1)
if i == 0:
if self._system != '' and self._system is not None:
system = self.template.SYSTEM.format(system=self._system)
input_text = system + input_text
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=True)
else:
input_encode = self.tokenizer.encode(
input_text, add_special_tokens=False)
input_ids += input_encode
labels += [IGNORE_INDEX] * len(input_encode)
output_text = single_turn_conversation.get('output', '')
if self.template.get('SUFFIX', None):
output_text += self.template.SUFFIX
output_encode = self.tokenizer.encode(
output_text, add_special_tokens=False)
input_ids += output_encode
labels += copy.deepcopy(output_encode)
if len(input_ids) > self.max_length:
input_ids = input_ids[:self.max_length]
labels = labels[:self.max_length]
print_log(
f'Warning: input_ids length({len(input_ids)}) '
f'is longer than max_length, cut to {self.max_length}',
logger='current')
return {'input_ids': input_ids, 'labels': labels}
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = LLaVADataset(
tokenizer=tokenizer,
data_path='data/llava_data/LLaVA-Instruct-150K/llava_instruct_150k.json',
prompt_template=prompt_template,
special_tokens=['[SEG]'],
image_folder='data/coco/train2017/',
)
for i in range(1000):
dataset[i]