Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
from PIL import Image | |
import cv2 | |
markdown_default = """ | |
<link href="https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&display=swap" rel="stylesheet"> | |
<style> | |
.highlighted-text { | |
font-family: 'Montserrat', sans-serif; | |
font-weight: 600; | |
font-size: 14px; | |
color: rgb(255, 255, 239); | |
background-color: rgb(225, 231, 254); | |
border-radius: 7px; | |
padding: 5px 7px; | |
display: inline-block; | |
} | |
.regular-text { | |
font-family: 'Montserrat', sans-serif; | |
font-weight: 400; | |
font-size: 14px; | |
} | |
.highlighted-response { | |
font-family: 'Montserrat', sans-serif; | |
font-weight: 600; | |
font-size: 14px; | |
border-radius: 6px; | |
padding: 3px 4px; | |
display: inline-block; | |
} | |
</style> | |
<span class="highlighted-text" style='color:rgb(107, 100, 239)'>Sa2VA</span> | |
""" | |
description = """ | |
**Usage** : <br> | |
 (1) For **Grounded Caption Generation** Interleaved Segmentation, input prompt like: *"Could you provide me with a detailed analysis of this photo? Please output with interleaved segmentation masks for the corresponding parts of the answer."* <br> | |
 (2) For **Segmentation Output**, input prompt like: *"Can you please segment xxx in the given image"* <br> | |
 (3) For **Image Captioning** VQA, input prompt like: *"Could you please give me a detailed description of the image?"* <br> | |
 (4) For **Image Conversation**, input arbitrary text instruction. <br> | |
""" | |
ONE_THIRD = 1.0/3.0 | |
ONE_SIXTH = 1.0/6.0 | |
TWO_THIRD = 2.0/3.0 | |
def desaturate(rgb, factor=0.65): | |
""" | |
Desaturate an RGB color by a given factor. | |
:param rgb: A tuple of (r, g, b) where each value is in [0, 255]. | |
:param factor: The factor by which to reduce the saturation. | |
0 means completely desaturated, 1 means original color. | |
:return: A tuple of desaturated (r, g, b) values in [0, 255]. | |
""" | |
r, g, b = [x / 255.0 for x in rgb] | |
h, l, s = rgb_to_hls(r, g, b) | |
l = factor | |
new_r, new_g, new_b = hls_to_rgb(h, l, s) | |
return (int(new_r * 255), int(new_g * 255), int(new_b * 255)) | |
def rgb_to_hls(r, g, b): | |
maxc = max(r, g, b) | |
minc = min(r, g, b) | |
sumc = (maxc+minc) | |
rangec = (maxc-minc) | |
l = sumc/2.0 | |
if minc == maxc: | |
return 0.0, l, 0.0 | |
if l <= 0.5: | |
s = rangec / sumc | |
else: | |
s = rangec / (2.0-sumc) | |
rc = (maxc-r) / rangec | |
gc = (maxc-g) / rangec | |
bc = (maxc-b) / rangec | |
if r == maxc: | |
h = bc-gc | |
elif g == maxc: | |
h = 2.0+rc-bc | |
else: | |
h = 4.0+gc-rc | |
h = (h/6.0) % 1.0 | |
return h, l, s | |
def hls_to_rgb(h, l, s): | |
if s == 0.0: | |
return l, l, l | |
if l <= 0.5: | |
m2 = l * (1.0+s) | |
else: | |
m2 = l+s-(l*s) | |
m1 = 2.0*l - m2 | |
return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD)) | |
def _v(m1, m2, hue): | |
hue = hue % 1.0 | |
if hue < ONE_SIXTH: | |
return m1 + (m2-m1)*hue*6.0 | |
if hue < 0.5: | |
return m2 | |
if hue < TWO_THIRD: | |
return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0 | |
return m1 | |
def process_markdown(output_str, colors): | |
output_str = output_str.replace("\n", "").replace(" ", " ").replace("<s>", "")\ | |
.replace("<|im_end|>", '').replace("<|end|>", "") | |
output_str = output_str.split("ASSISTANT: ")[-1] | |
# markdown_out = output_str.replace('[SEG]', '') | |
markdown_out = output_str | |
markdown_out = markdown_out.replace( | |
"<p>", "<span class='highlighted-response' style='background-color:rgb[COLOR]'>" | |
) | |
markdown_out = markdown_out.replace("</p>", "</span>") | |
for color in colors: | |
markdown_out = markdown_out.replace("[COLOR]", str(desaturate(tuple(color))), 1) | |
markdown_out = f""" | |
{markdown_out} | |
""" | |
markdown_out = markdown_default + "<p><span class='regular-text'>" + markdown_out | |
return markdown_out | |
def show_mask_pred(image, masks): | |
masks = [mask[:1] for mask in masks] | |
masks = np.concatenate(masks, axis=0) # (n, h, w) | |
selected_colors = [] | |
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), | |
(255, 255, 0), (255, 0, 255), (0, 255, 255), | |
(128, 128, 255), [255, 192, 203], # Pink | |
[165, 42, 42], # Brown | |
[255, 165, 0], # Orange | |
[128, 0, 128], # Purple | |
[0, 0, 128], # Navy | |
[128, 0, 0], # Maroon | |
[128, 128, 0], # Olive | |
[70, 130, 180], # Steel Blue | |
[173, 216, 230], # Light Blue | |
[255, 192, 0], # Gold | |
[255, 165, 165], # Light Salmon | |
[255, 20, 147], # Deep Pink | |
] | |
_mask_image = np.zeros((masks.shape[1], masks.shape[2], 3), dtype=np.uint8) | |
for i, mask in enumerate(masks): | |
color = colors[i % len(colors)] | |
selected_colors.append(color) | |
_mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0] | |
_mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1] | |
_mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2] | |
image = np.array(image) | |
image = image * 0.5 + _mask_image * 0.5 | |
image = image.astype(np.uint8) | |
return image, selected_colors | |
def show_mask_pred_video(video, masks): | |
ret_video = [] | |
selected_colors = [] | |
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), | |
(255, 255, 0), (255, 0, 255), (0, 255, 255), | |
(128, 128, 255), [255, 192, 203], # Pink | |
[165, 42, 42], # Brown | |
[255, 165, 0], # Orange | |
[128, 0, 128], # Purple | |
[0, 0, 128], # Navy | |
[128, 0, 0], # Maroon | |
[128, 128, 0], # Olive | |
[70, 130, 180], # Steel Blue | |
[173, 216, 230], # Light Blue | |
[255, 192, 0], # Gold | |
[255, 165, 165], # Light Salmon | |
[255, 20, 147], # Deep Pink | |
] | |
for i_frame in range(len(video)): | |
frame_masks = [mask[i_frame:i_frame+1] for mask in masks] | |
frame_masks = np.concatenate(frame_masks, axis=0) | |
_mask_image = np.zeros((frame_masks.shape[1], frame_masks.shape[2], 3), dtype=np.uint8) | |
for i, mask in enumerate(frame_masks): | |
if i_frame == 0: | |
color = colors[i % len(colors)] | |
selected_colors.append(color) | |
else: | |
color = selected_colors[i] | |
_mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0] | |
_mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1] | |
_mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2] | |
image = np.array(video[i_frame]) | |
image = image * 0.5 + _mask_image * 0.5 | |
image = image.astype(np.uint8) | |
ret_video.append(image) | |
return ret_video, selected_colors | |
def parse_visual_prompts(points): | |
ret = {'points': [], 'boxes': []} | |
for item in points: | |
if item[2] == 1.0: | |
ret['points'].append([item[0], item[1]]) | |
elif item[2] == 2.0 or item[2] == 3.0: | |
ret['boxes'].append([item[0], item[1], item[3], item[4]]) | |
else: | |
raise NotImplementedError | |
return ret | |
def get_video_frames(video_path): | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print("Error: Cannot open video file.") | |
return | |
frames = [] | |
frame_id = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frames.append(frame) | |
frame_id += 1 | |
cap.release() | |
return frames | |
def get_frames_from_video(video_path, n_frames=5, sample_type="uniform"): | |
frames = get_video_frames(video_path) | |
if sample_type == "uniform": | |
stride = len(frames) / (n_frames + 1e-4) | |
ret = [] | |
for i in range(n_frames): | |
idx = int(i * stride) | |
frame = frames[idx] | |
frame = frame[:, :, ::-1] | |
frame_image = Image.fromarray(frame).convert('RGB') | |
ret.append(frame_image) | |
else: | |
ret = [] | |
for frame in frames[:500]: | |
frame = frame[:, :, ::-1] | |
frame_image = Image.fromarray(frame).convert('RGB') | |
ret.append(frame_image) | |
return ret | |
def preprocess_video(video_path, text): | |
if "Segment" in text or "segment" in text: | |
sample_type = 'begin' | |
else: | |
sample_type = 'uniform' | |
return get_frames_from_video(video_path, sample_type=sample_type) | |
def image2video_and_save(frames, save_path): | |
success = frames_to_video(frames, save_path) | |
return save_path | |
def frames_to_video( | |
frames, | |
output_path: str, | |
fps: int = 24, | |
) -> bool: | |
try: | |
frames = [frame[:, :, ::-1] for frame in frames] | |
# Use provided frame size or get from first frame | |
height, width = frames[0].shape[:2] | |
# Initialize video writer | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
# Process each frame | |
for frame in frames: | |
out.write(frame) | |
# Release video writer | |
out.release() | |
print(f"Video saved successfully to {output_path}") | |
return True | |
except Exception as e: | |
print(f"Error converting frames to video: {str(e)}") | |
return False |