import logging import os from typing import Literal import torch from datasets import Dataset as HFDataset from datasets import DatasetDict from mmengine import print_log from PIL import Image from torch.utils.data import Dataset import numpy as np from xtuner.registry import BUILDER from xtuner.dataset.huggingface import build_origin_dataset import copy from .encode_fn import video_lisa_encode_fn import json import random import pycocotools.mask as maskUtils import cv2 import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode SEG_QUESTIONS = [ "Can you segment the {class_name} in this image?", "Please segment {class_name} in this image.", "What is {class_name} in this image? Please respond with segmentation mask.", "What is {class_name} in this image? Please output segmentation mask.", "Can you segment the {class_name} in this image", "Please segment {class_name} in this image", "What is {class_name} in this image? Please respond with segmentation mask", "What is {class_name} in this image? Please output segmentation mask", "Could you provide a segmentation mask for the {class_name} in this image?", "Please identify and segment the {class_name} in this image.", "Where is the {class_name} in this picture? Please respond with a segmentation mask.", "Can you highlight the {class_name} in this image with a segmentation mask?", "Could you provide a segmentation mask for the {class_name} in this image", "Please identify and segment the {class_name} in this image", "Where is the {class_name} in this picture? Please respond with a segmentation mask", "Can you highlight the {class_name} in this image with a segmentation mask", ] ANSWER_LIST = [ "It is [SEG].", "Sure, [SEG].", "Sure, it is [SEG].", "Sure, the segmentation result is [SEG].", "[SEG].", ] class VideoReVOSDataset(Dataset): IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) IMG_CONTEXT_TOKEN = '' IMG_START_TOKEN = '' IMG_END_TOKEN = '' FAST_IMG_CONTEXT_TOKEN = '' FAST_IMG_START_TOKEN = '' FAST_IMG_END_TOKEN = '' def __init__(self, image_folder, expression_file, mask_file, extra_image_processor=None, tokenizer=None, select_number=5, sampled_frames=10, offline_processed_text_folder=None, template_map_fn=None, max_length=2048, lazy=True, repeats=1, special_tokens=None, frame_contiguous_sample=False, use_fast=False, arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl', preprocessor=None, # only work if use_fast = True n_fast_images=50, fast_pool_size=4, fast_token_after_question=False, ): assert lazy is True self.tokenizer = BUILDER.build(tokenizer) self.select_number = select_number self.sampled_frames = sampled_frames assert offline_processed_text_folder or (expression_file and tokenizer) self.lazy = lazy self.max_length = max_length self.template_map_fn = template_map_fn if isinstance(self.template_map_fn, dict) and self.lazy: _type = self.template_map_fn['type'] del self.template_map_fn['type'] self.template_map_fn = _type(**self.template_map_fn) if offline_processed_text_folder and expression_file: print_log( 'Both `offline_processed_text_folder` and ' '`data_path` are set, and we load dataset from' '`offline_processed_text_folder` ' f'({offline_processed_text_folder})', logger='current', level=logging.WARNING) self.arch_type = arch_type if self.arch_type == 'qwen': self.IMG_CONTEXT_TOKEN = '<|image_pad|>' self.IMG_START_TOKEN = '<|vision_start|>' self.IMG_END_TOKEN = '<|vision_end|>' elif self.arch_type == 'llava': self.IMG_CONTEXT_TOKEN = '' self.IMG_START_TOKEN = '' self.IMG_END_TOKEN = '' if offline_processed_text_folder is not None: raise NotImplementedError else: vid2metaid, metas, mask_dict = self.json_file_preprocess(expression_file, mask_file) self.vid2metaid = vid2metaid self.videos = list(self.vid2metaid.keys()) self.mask_dict = mask_dict self.json_datas = metas json_datas = metas json_data = DatasetDict({'train': HFDataset.from_list(json_datas)}) if self.lazy: self.text_data = build_origin_dataset(json_data, 'train') else: raise NotImplementedError self.image_folder = image_folder if extra_image_processor is not None: self.extra_image_processor = BUILDER.build(extra_image_processor) self.down_ratio = 1 self.repeats = repeats self._system = '' self.downsample_ratio = 0.5 if self.arch_type == 'llava': self.downsample_ratio = 1 self.image_size = 448 if self.arch_type == 'llava': self.image_size = 336 patch_size = 14 self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) if self.arch_type == 'qwen': self.patch_token = 1 if preprocessor is None: self.transformer = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) ]) self.preprocessor = None else: self.transformer = None self.preprocessor = BUILDER.build(preprocessor) if special_tokens is not None: self.tokenizer.add_tokens(special_tokens, special_tokens=True) self.use_fast = use_fast self.n_fast_images = n_fast_images self.fast_pool_size = fast_pool_size self.frame_contiguous_sample = frame_contiguous_sample # for visualization debug self.save_folder = './work_dirs/video_debug/' self.cur_number = 0 # exist_thr self.exist_thr = 8 self.fast_token_after_question = fast_token_after_question if self.fast_token_after_question: assert self.use_fast print("Video res dataset, include {} items.".format(len(self.vid2metaid))) def __len__(self): return len(self.vid2metaid) * self.repeats @property def modality_length(self): length_list = [] for data_dict in self.vid2metaid: cur_len = 10000 length_list.append(cur_len) return length_list def real_len(self): return len(self.vid2metaid) def json_file_preprocess(self, expression_file, mask_file): # prepare expression annotation files with open(expression_file, 'r') as f: expression_datas = json.load(f)['videos'] metas = [] anno_count = 0 # serve as anno_id vid2metaid = {} for vid_name in expression_datas: vid_express_data = expression_datas[vid_name] vid_frames = sorted(vid_express_data['frames']) vid_len = len(vid_frames) exp_id_list = sorted(list(vid_express_data['expressions'].keys())) for exp_id in exp_id_list: exp_dict = vid_express_data['expressions'][exp_id] meta = {} meta['video'] = vid_name meta['exp'] = exp_dict['exp'] # str meta['mask_anno_id'] = exp_dict['anno_id'] if 'obj_id' in exp_dict.keys(): meta['obj_id'] = exp_dict['obj_id'] else: meta['obj_id'] = [0, ] # Ref-Youtube-VOS only has one object per expression meta['anno_id'] = [str(anno_count), ] anno_count += 1 meta['frames'] = vid_frames meta['exp_id'] = exp_id meta['length'] = vid_len metas.append(meta) if vid_name not in vid2metaid.keys(): vid2metaid[vid_name] = [] vid2metaid[vid_name].append(len(metas) - 1) # process mask annotation files with open(mask_file, 'rb') as f: mask_dict = json.load(f) return vid2metaid, metas, mask_dict def create_img_to_refs_mapping(self, refs_train): img2refs = {} for ref in refs_train: img2refs[ref["image_id"]] = img2refs.get(ref["image_id"], []) + [ref, ] return img2refs def decode_mask(self, video_masks, image_size): ret_masks = [] for object_masks in video_masks: # None object if len(object_masks) == 0: if len(ret_masks) != 0: _object_masks = ret_masks[0] * 0 else: _object_masks = np.zeros( (self.sampled_frames, image_size[0], image_size[1]), dtype=np.uint8) else: _object_masks = [] for i_frame in range(len(object_masks[0])): _mask = np.zeros(image_size, dtype=np.uint8) for i_anno in range(len(object_masks)): if object_masks[i_anno][i_frame] is None: continue m = maskUtils.decode(object_masks[i_anno][i_frame]) if m.ndim == 3: m = m.sum(axis=2).astype(np.uint8) else: m = m.astype(np.uint8) _mask = _mask | m _object_masks.append(_mask) _object_masks = np.stack(_object_masks, axis=0) # if self.pad_image_to_square: # _object_masks = expand2square_mask(_object_masks) ret_masks.append(_object_masks) _shape = ret_masks[0].shape for item in ret_masks: if item.shape != _shape: print([_ret_mask.shape for _ret_mask in ret_masks]) return None ret_masks = np.stack(ret_masks, axis=0) # (n_obj, n_frames, h, w) ret_masks = torch.from_numpy(ret_masks) # ret_masks = F.interpolate(ret_masks, size=(self.image_size // self.down_ratio, # self.image_size // self.down_ratio), mode='nearest') ret_masks = ret_masks.flatten(0, 1) return ret_masks def dataset_map_fn(self, data_dict, select_k=5): images = [] len_frames = len(data_dict[0]['frames']) for objet_info in data_dict: assert len_frames == len(objet_info['frames']) # prepare images, random select k frames if len_frames > select_k + 1: if self.frame_contiguous_sample and random.random() < 0.5: # do contiguous sample selected_start_frame = np.random.choice(len_frames - select_k, 1, replace=False) selected_frame_indexes = [selected_start_frame[0] + _i for _i in range(select_k)] else: selected_frame_indexes = np.random.choice(len_frames, select_k, replace=False) else: selected_frame_indexes = np.random.choice(len_frames, select_k, replace=True) selected_frame_indexes.sort() if self.use_fast: # sample fast branch fast_interval = len_frames / (self.n_fast_images + 1e-4) sampled_fast_frame_idxs = [min(int(i * fast_interval), len_frames - 1) for i in range(self.n_fast_images)] fast_video_frames = [] for selected_frame_index in sampled_fast_frame_idxs: frame_id = data_dict[0]['frames'][selected_frame_index] fast_video_frames.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg')) else: fast_video_frames = None sampled_fast_frame_idxs = None for selected_frame_index in selected_frame_indexes: frame_id = data_dict[0]['frames'][selected_frame_index] images.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg')) # prepare text expressions = [object_info['exp'] for object_info in data_dict] if self.use_fast: text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token, n_fast_images=len(fast_video_frames),) else: text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token) # prepare masks video_masks = [] for object_info in data_dict: anno_ids = object_info['mask_anno_id'] # print('anno_ids: ', anno_ids) obj_masks = [] for anno_id in anno_ids: anno_id = str(anno_id) frames_masks = self.mask_dict[anno_id] frames_masks_ = [] for frame_idx in selected_frame_indexes: frames_masks_.append(copy.deepcopy(frames_masks[frame_idx])) obj_masks.append(frames_masks_) video_masks.append(obj_masks) if self.use_fast: fast_video_masks = [] assert sampled_fast_frame_idxs is not None for object_info in data_dict: anno_ids = object_info['mask_anno_id'] obj_masks = [] for anno_id in anno_ids: anno_id = str(anno_id) frames_masks = self.mask_dict[anno_id] frames_masks_ = [] for frame_idx in sampled_fast_frame_idxs: frames_masks_.append(copy.deepcopy(frames_masks[frame_idx])) obj_masks.append(frames_masks_) fast_video_masks.append(obj_masks) else: fast_video_masks = None ret = {'images': images, 'video_masks': video_masks, 'conversation': text_dict['conversation'], 'fast_images': fast_video_frames, 'fast_video_masks': fast_video_masks} return ret def prepare_text(self, n_frames, expressions, num_image_tokens=256, n_fast_images=50): if self.use_fast and not self.fast_token_after_question: fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \ f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \ f'{self.FAST_IMG_END_TOKEN}' + '\n' else: fast_frame_token_str = '' frame_token_str = f'{self.IMG_START_TOKEN}' \ f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ f'{self.IMG_END_TOKEN}' if self.fast_token_after_question: assert self.use_fast after_question_str = f'{self.FAST_IMG_START_TOKEN}' \ f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \ f'{self.FAST_IMG_END_TOKEN}' else: after_question_str = '' questions = [] answers = [] for i, exp in enumerate(expressions): # the exp is a question if '?' in exp: questions.append(exp) else: exp = exp.replace('.', '').strip() question_template = random.choice(SEG_QUESTIONS) questions.append(question_template.format(class_name=exp.lower())) answers.append(random.choice(ANSWER_LIST)) qa_list = [] for i, (question, answer) in enumerate(zip(questions, answers)): if i == 0: frame_tokens = frame_token_str + '\n' # frame_tokens = '=' + ' ' frame_tokens = frame_tokens * n_frames frame_tokens = frame_tokens.strip() frame_tokens = fast_frame_token_str + frame_tokens qa_list.append( {'from': 'human', 'value': frame_tokens + question + after_question_str} ) else: qa_list.append( {'from': 'human', 'value': question + after_question_str} ) qa_list.append( {'from': 'gpt', 'value': answer} ) input = '' conversation = [] for msg in qa_list: if msg['from'] == 'human': input += msg['value'] elif msg['from'] == 'gpt': conversation.append({'input': input, 'output': msg['value']}) input = '' else: raise NotImplementedError # add system information conversation[0].update({'system': self._system}) return {'conversation': conversation} def __getitem__(self, index): index = index % self.real_len() selected_video_objects = self.vid2metaid[self.videos[index]] video_objects_infos = [copy.deepcopy(self.text_data[idx]) for idx in selected_video_objects] if len(video_objects_infos) > self.select_number: selected_indexes = np.random.choice(len(video_objects_infos), self.select_number) video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes] else: selected_indexes = np.random.choice(len(video_objects_infos), self.select_number, replace=True) video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes] data_dict = self.dataset_map_fn(video_objects_infos, select_k=self.sampled_frames) assert 'images' in data_dict.keys() pixel_values = [] extra_pixel_values = [] num_video_tokens = None num_frame_tokens = None if data_dict.get('images', None) is not None: frames_files = data_dict['images'] frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files] for frame_path in frames_files: frame_image = Image.open(frame_path).convert('RGB') ori_width, ori_height = frame_image.size if self.extra_image_processor is not None: g_image = np.array(frame_image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() extra_pixel_values.append(g_pixel_values) if self.preprocessor is not None: pass else: frame_image = self.transformer(frame_image) pixel_values.append(frame_image) if self.preprocessor is not None: if self.arch_type == 'qwen': _data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size)) _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) _data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int) num_frame_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2)) num_frames = _data_dict['image_grid_thw'].shape[0] num_video_tokens = num_frame_tokens * num_frames elif self.arch_type == 'llava': _data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size)) _data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0) _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float) else: raise NotImplementedError data_dict.update(_data_dict) else: pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w) data_dict['pixel_values'] = pixel_values if self.extra_image_processor is not None: data_dict['g_pixel_values'] = extra_pixel_values # process and get masks masks = self.decode_mask(data_dict['video_masks'], image_size=(ori_height, ori_width)) if masks is None: return self.__getitem__(random.randint(0, self.real_len())) data_dict['masks'] = masks else: data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size) data_dict['masks'] = None if num_video_tokens is not None: assert self.patch_token == 1 input_str = data_dict['conversation'][0]['input'] input_str = input_str.replace(self.IMG_CONTEXT_TOKEN, self.IMG_CONTEXT_TOKEN * num_frame_tokens) assert input_str.count(self.IMG_CONTEXT_TOKEN) == num_video_tokens data_dict['conversation'][0]['input'] = input_str result = self.template_map_fn(data_dict) data_dict.update(result) result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length) data_dict.update(result) # for fast branch if self.use_fast: fast_pixel_values = [] frames_files = data_dict['fast_images'] frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files] for frame_path in frames_files: frame_image = Image.open(frame_path).convert('RGB') ori_width, ori_height = frame_image.size frame_image = self.transformer(frame_image) fast_pixel_values.append(frame_image) fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w) data_dict['fast_pixel_values'] = fast_pixel_values # process and get masks masks = self.decode_mask(data_dict['fast_video_masks'], image_size=(ori_height, ori_width)) if masks is None: return self.__getitem__(random.randint(0, self.real_len())) data_dict['fast_exists'] = masks.to(dtype=torch.int).sum(dim=(-2, -1)).ge(self.exist_thr).unsqueeze(-1) del data_dict['fast_video_masks'] data_dict['type'] = 'video' return data_dict def visualization_debug(self, data_dict): save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number)) if not os.path.exists(save_folder): os.mkdir(save_folder) self.cur_number += 1 # images show_images = [] pixel_values = data_dict['pixel_values'] save_folder_image = os.path.join(save_folder, 'image') if not os.path.exists(save_folder_image): os.mkdir(save_folder_image) for i_image, image_pixel_value in enumerate(pixel_values): # print(image_pixel_value.shape) image_pixel_value[0] = image_pixel_value[0] * 0.2686 image_pixel_value[1] = image_pixel_value[1] * 0.2613 image_pixel_value[2] = image_pixel_value[2] * 0.2757 image_pixel_value[0] = image_pixel_value[0] + 0.4814 image_pixel_value[1] = image_pixel_value[1] + 0.4578 image_pixel_value[2] = image_pixel_value[2] + 0.4082 image_pixel_value = image_pixel_value * 255 image_pixel_value = image_pixel_value.permute(1, 2, 0) image_pixel_value = image_pixel_value.to(torch.uint8).numpy() # print(os.path.join(save_folder_image, '{}.jpg'.format(i_image))) # print(image_pixel_value.shape) show_images.append(image_pixel_value) cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value) # text input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False) with open(os.path.join(save_folder, 'text.json'), 'w') as f: json.dump([input_text], f) # masks save_folder_mask = os.path.join(save_folder, 'mask') if not os.path.exists(save_folder_mask): os.mkdir(save_folder_mask) n_frames = len(pixel_values) masks = data_dict['masks'] _, h, w = masks.shape masks = masks.reshape(-1, n_frames, h, w) for i_obj, obj_masks in enumerate(masks): save_folder_mask_obj_folder = os.path.join(save_folder_mask, 'obj_{}'.format(i_obj)) if not os.path.exists(save_folder_mask_obj_folder): os.mkdir(save_folder_mask_obj_folder) for i_frame, f_mask in enumerate(obj_masks): f_mask = f_mask.numpy() f_mask = f_mask * 255 f_mask = np.stack([f_mask * 1, f_mask * 0, f_mask * 0], axis=2) f_mask = show_images[i_frame] * 0.3 + 0.7 * f_mask f_mask = f_mask.astype(np.uint8) cv2.imwrite(os.path.join(save_folder_mask_obj_folder, '{}.png'.format(i_frame)), f_mask) return