import copy from xtuner.dataset.utils import get_bos_eos_token_ids from xtuner.utils import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX def video_lisa_encode_fn( example, tokenizer, max_length, input_ids_with_output=True, **kwargs ): """We only support the following three scenarios: 1. Incremental pretraining dataset. example['conversation'] = [ { 'input': '', 'output': '### Human: Can you write xxx' } ] 2. Single-turn conversation dataset. example['conversation'] = [ { 'input': 'Give three tips for staying healthy.', 'output': '1.Eat a balanced diet xxx' } ] 3. Multi-turn conversation dataset. example['conversation'] = [ { 'input': 'Give three tips for staying healthy.', 'output': '1.Eat a balanced diet xxx' }, { 'input': 'Please expand on the second point.', 'output': 'Here is an expanded explanation of the xxx' } ] """ bos_token_id, eos_token_id = get_bos_eos_token_ids(tokenizer) is_multi_turn_conversation = len(example['conversation']) > 1 if is_multi_turn_conversation: assert input_ids_with_output input_ids, labels = [], [] next_needs_bos_token = True for single_turn_conversation in example['conversation']: input = single_turn_conversation['input'] input_encode = tokenizer.encode(input, add_special_tokens=False) if next_needs_bos_token: input_ids += bos_token_id labels += [IGNORE_INDEX] * len(bos_token_id) input_ids += input_encode labels += [IGNORE_INDEX] * len(input_encode) if input_ids_with_output: # Add output output_with_loss = single_turn_conversation.get( 'output_with_loss', True) output = single_turn_conversation['output'] output_encode = tokenizer.encode(output, add_special_tokens=False) input_ids += output_encode if output_with_loss: labels += copy.deepcopy(output_encode) else: labels += [IGNORE_INDEX] * len(output_encode) # Add EOS_TOKEN (with loss) if single_turn_conversation.get('need_eos_token', True): next_needs_bos_token = True input_ids += eos_token_id if output_with_loss: labels += copy.deepcopy(eos_token_id) else: labels += [IGNORE_INDEX] * len(eos_token_id) else: next_needs_bos_token = False # Add SEP (without loss) sep = single_turn_conversation.get('sep', '') if sep != '': sep_encode = tokenizer.encode(sep, add_special_tokens=False) input_ids += sep_encode labels += [IGNORE_INDEX] * len(sep_encode) if len(input_ids) > max_length: input_ids = input_ids[:max_length] labels = labels[:max_length] return {'input_ids': input_ids, 'labels': labels} def video_lisa_encode_multi_conv_fn( example, tokenizer, max_length, input_ids_with_output=True ): """We only support the following three scenarios: 1. Incremental pretraining dataset. example['conversation'] = [ { 'input': '', 'output': '### Human: Can you write xxx' } ] 2. Single-turn conversation dataset. example['conversation'] = [ { 'input': 'Give three tips for staying healthy.', 'output': '1.Eat a balanced diet xxx' } ] 3. Multi-turn conversation dataset. example['conversation'] = [ { 'input': 'Give three tips for staying healthy.', 'output': '1.Eat a balanced diet xxx' }, { 'input': 'Please expand on the second point.', 'output': 'Here is an expanded explanation of the xxx' } ] """ bos_token_id, eos_token_id = get_bos_eos_token_ids(tokenizer) assert not input_ids_with_output input_id_list = [] for conv in example['conversation']: input_ids = [] next_needs_bos_token = True for single_turn_conversation in conv: input = single_turn_conversation['input'] input_encode = tokenizer.encode(input, add_special_tokens=False) if next_needs_bos_token: input_ids += bos_token_id input_ids += input_encode if len(input_ids) > max_length: input_ids = input_ids[:max_length] input_id_list.append(input_ids) return {'input_ids': input_id_list}