import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria import gradio as gr import spaces import torch import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from PIL import Image, ExifTags from threading import Thread import re import time from PIL import Image import torch import spaces import subprocess import os subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) torch.set_default_device('cuda') IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def correct_image_orientation(image_path): # Mở ảnh image = Image.open(image_path) # Kiểm tra dữ liệu Exif (nếu có) try: exif = image._getexif() if exif is not None: for tag, value in exif.items(): if ExifTags.TAGS.get(tag) == "Orientation": # Sửa hướng dựa trên Orientation if value == 3: image = image.rotate(180, expand=True) elif value == 6: image = image.rotate(-90, expand=True) elif value == 8: image = image.rotate(90, expand=True) break except Exception as e: print("Không thể xử lý Exif:", e) return image def load_image(image_file, input_size=448, max_num=12): image = correct_image_orientation(image_file).convert('RGB') print("Image size: ", image.size) transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values model = AutoModel.from_pretrained( "5CD-AI/Vintern-1B-v3_5", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False) @spaces.GPU def chat(message, history): print("history",history) print("message",message) if len(history) != 0 and len(message["files"]) != 0: return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện. We currently only support one image at the start of the context! Please start a new conversation.""" if len(history) == 0 and len(message["files"]) != 0: if "path" in message["files"][0]: test_image = message["files"][0]["path"] else: test_image = message["files"][0] pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda() elif len(history) == 0 and len(message["files"]) == 0: pixel_values = None elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]): test_image = history[0][0][0] pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda() else: pixel_values = None generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5) if len(history) == 0: if pixel_values is not None: question = '\n'+message["text"] else: question = message["text"] response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) else: conv_history = [] if history[0][0][0] is not None and os.path.isfile(history[0][0][0]): start_index = 1 else: start_index = 0 for i, chat_pair in enumerate(history[start_index:]): if i == 0 and start_index == 1: conv_history.append(tuple(['\n'+chat_pair[0],chat_pair[1]])) else: conv_history.append(tuple(chat_pair)) print("conv_history",conv_history) question = message["text"] response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True) print(f'User: {question}\nAssistant: {response}') # return response buffer = "" for new_text in response: buffer += new_text generated_text_without_prompt = buffer[:] time.sleep(0.02) yield generated_text_without_prompt CSS =""" #component-10 { height: 70dvh !important; transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */ border-style: solid; overflow: hidden; flex-grow: 1; min-width: min(160px, 100%); border-width: var(--block-border-width); } /* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */ button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv { width: 100%; object-fit: contain; height: 100%; border-radius: 13px; /* Thêm bo góc cho ảnh */ max-width: 50vw; /* Giới hạn chiều rộng ảnh */ } /* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */ button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] { user-select: text; text-align: left; height: 300px; } /* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */ .message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img { border-radius: 13px; max-width: 50vw; } .message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img { margin: var(--size-2); max-height: 500px; } .image-preview-close-button { position: relative; /* Nếu cần định vị trí */ width: 5%; /* Chiều rộng nút */ height: 5%; /* Chiều cao nút */ display: flex; justify-content: center; align-items: center; padding: 0; /* Để tránh ảnh hưởng từ padding mặc định */ border: none; /* Tùy chọn để loại bỏ đường viền */ background: none; /* Tùy chọn để loại bỏ nền */ } .example-image-container.svelte-9pi8y1 { width: calc(var(--size-8) * 5); height: calc(var(--size-8) * 5); border-radius: var(--radius-lg); overflow: hidden; position: relative; margin-bottom: var(--spacing-lg); } """ js = """ function forceLightTheme() { const url = new URL(window.location); // Cập nhật __theme thành light nếu giá trị không đúng if (url.searchParams.get('__theme') !== 'light') { url.searchParams.set('__theme', 'light'); // Thay đổi URL mà không tải lại trang nếu cần window.history.replaceState({}, '', url.href); } // Đảm bảo document luôn áp dụng theme light document.documentElement.setAttribute('data-theme', 'light'); } """ from transformers import pipeline pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device="cuda:0") @spaces.GPU def transcribe_speech(filepath): output = pipe( filepath, max_new_tokens=256, generate_kwargs={ "task": "transcribe", }, chunk_length_s=30, batch_size=1, ) return output["text"] demo = gr.Blocks(css=CSS,js=js, theme='NoCrypt/miku') with demo: chat_demo_interface = gr.ChatInterface( fn=chat, description="""**Vintern-1B-v3.5** is the latest in the Vintern series, bringing major improvements over v2 across all benchmarks. This **continuous fine-tuning Version** enhances Vietnamese capabilities while retaining strong English performance. It excels in OCR, text recognition, and Vietnam-specific document understanding.""", examples=[{"text": "Hãy viết một email giới thiệu sản phẩm trong ảnh.", "files":["./demo_3.jpg"]}, {"text": "Trích xuất các thông tin từ ảnh trả về markdown.", "files":["./demo_1.jpg"]}, {"text": "Bạn là nhân viên marketing chuyên nghiệp. Hãy viết một bài quảng cáo dài trên mạng xã hội giới thiệu về cửa hàng.", "files":["./demo_2.jpg"]}, {"text": "Trích xuất thông tin kiện hàng trong ảnh và trả về dạng JSON.", "files":["./demo_4.jpg"]}], title="❄️ Vintern-1B-v3.5 Demo ❄️", multimodal=True, css=CSS, js=js, theme='NoCrypt/miku' ) # mic_transcribe = gr.Interface( # fn=transcribe_speech, # inputs=gr.Audio(sources="microphone", type="filepath", editable=False), # outputs=gr.components.Textbox(), # ) # chat_demo_interface.queue() demo.queue().launch()