from transformers import pipeline from transformers import DetrFeatureExtractor, DetrForObjectDetection from PIL import Image, ImageDraw, ImageFont import gradio as gr # Initialize another model and feature extractor feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50') model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50') # Initialize the object detection pipeline object_detector = pipeline("object-detection", model = model, feature_extractor = feature_extractor) # Draw bounding box definition def draw_bounding_box(im, score, label, xmin, ymin, xmax, ymax, index, num_boxes): """ Draw a bounding box. """ # Draw the actual bounding box outline = ' ' if label in ['truck', 'car', 'motorcycle', 'bus']: outline = 'red' elif label in ['person', 'bicycle']: outline = 'green' else: outline = 'blue' im_with_rectangle = ImageDraw.Draw(im) im_with_rectangle.rounded_rectangle((xmin, ymin, xmax, ymax), outline = outline, width = 3, radius = 10) # Return the result return im def detect_image(im): # Perform object detection bounding_boxes = object_detector(im) # Iteration elements num_boxes = len(bounding_boxes) index = 0 # Draw bounding box for each result for bounding_box in bounding_boxes: if bounding_box['label'] in ['person','motorcycle','bicycle', 'truck', 'car','bus']: box = bounding_box['box'] #Draw the bounding box output_image = draw_bounding_box(im, bounding_box['score'], bounding_box['label'], box['xmin'], box['ymin'], box['xmax'], box['ymax'], index, num_boxes) index += 1 return output_image iface = gr.Interface(detect_image, gr.inputs.Image(type = 'pil'), gr.outputs.Image()).launch(share = True)