Spaces:
Runtime error
Runtime error
import torchaudio | |
def speech_file_to_array_fn(path): | |
speech_array, sampling_rate = torchaudio.load(path) | |
resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate) | |
speech = resampler(speech_array).squeeze().numpy() | |
return speech | |
def label_to_id(label, label_list): | |
if len(label_list) > 0: | |
return label_list.index(label) if label in label_list else -1 | |
return label | |
def preprocess_function(examples): | |
speech_list = [speech_file_to_array_fn(path) for path in examples[input_column]] | |
target_list = [label_to_id(label, label_list) for label in examples[output_column]] | |
result = processor(speech_list, sampling_rate=target_sampling_rate) | |
result["labels"] = list(target_list) | |
return result | |
class SpeechClassifierOutput(ModelOutput): | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None |