Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
from main import SpeechClassifierOutput, Wav2Vec2ForSpeechClassification | |
from datasets import load_dataset | |
from transformers import AutoConfig, Wav2Vec2Processor | |
import torchaudio | |
import torch | |
import torch.nn.functional as F | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
import os | |
sns.set_theme(style="darkgrid", palette="pastel") | |
def demo_speech_file_to_array_fn(path): | |
speech_array, _sampling_rate = torchaudio.load(path, normalize=True) | |
resampler = torchaudio.transforms.Resample(_sampling_rate, 16_000) | |
speech = resampler(speech_array).squeeze().numpy() | |
return speech | |
def demo_predict(df_row): | |
path, emotion = df_row["path"], df_row["emotion"] | |
speech = demo_speech_file_to_array_fn(path) | |
features = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) | |
input_values = features.input_values.to(device) | |
attention_mask = features.attention_mask.to(device) | |
with torch.no_grad(): | |
logits = model(input_values, attention_mask=attention_mask).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = [{"Emotion": config.id2label[i], "Score": round(score * 100, 3)} for i, score in enumerate(scores)] | |
return outputs | |
def cache_model(): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_name_or_path = 'khizon/greek-speech-emotion-classifier-demo' | |
generic_greek_model = 'lighteternal/wav2vec2-large-xlsr-53-greek' | |
config = AutoConfig.from_pretrained(model_name_or_path) | |
processor = Wav2Vec2Processor.from_pretrained(generic_greek_model) | |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) | |
return config, processor, model, device | |
def load_data(): | |
return pd.read_csv('data/test.csv', delimiter = '\t') | |
def bar_plot(df): | |
fig = plt.figure(figsize=(8, 6)) | |
plt.title("Prediction Scores") | |
plt.xticks(fontsize=12) | |
plt.xlim(0,100) | |
sns.barplot(x="Score", y="Emotion", data=df) | |
st.pyplot(fig) | |
if __name__ == '__main__': | |
if not os.path.exists('/home/user/app/aesdd.zip'): | |
os.system('python download_dataset.py') | |
test = load_data() | |
config, processor, model, device = cache_model() | |
print('Model loaded') | |
st.title("Emotion Classifier for Greek Speech Audio Demo") | |
if st.button("Classify Random Audio"): | |
# Load demo file | |
idx = np.random.randint(0, len(test)) | |
sample = test.iloc[idx] | |
audio_file = open(sample['path'], 'rb') | |
audio_bytes = audio_file.read() | |
st.success(f'Label: {sample["emotion"]}') | |
st.audio(audio_bytes, format='audio/ogg') | |
outputs = demo_predict(sample) | |
r = pd.DataFrame(outputs) | |
# st.dataframe(r) | |
bar_plot(r) |