import wandb from main import * def cache_model(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generic_greek_model = 'lighteternal/wav2vec2-large-xlsr-53-greek' local_model = 'artifacts/aesdd_classifier-v0' config = AutoConfig.from_pretrained(local_model) processor = Wav2Vec2Processor.from_pretrained(generic_greek_model) model = Wav2Vec2ForSpeechClassification.from_pretrained(local_model).to(device) return config, processor, model, device if __name__ == '__main__': # with wandb.init() as run: # artifact = run.use_artifact('khizon/EE286_final_project/aesdd_classifier:v0', type='model') # artifact_dir = artifact.download() config, processor, model, device = cache_model() model.push_to_hub("greek-emotion-classifier-demo")