khointn's picture
Upload folder using huggingface_hub
5a67683 verified
raw
history blame
2.37 kB
from fastapi import APIRouter
from llama_index.llms import ChatMessage, MessageRole
from pydantic import BaseModel
from app.components.embedding.component import EmbeddingComponent
from app.components.llm.component import LLMComponent
from app.components.node_store.component import NodeStoreComponent
from app.components.vector_store.component import VectorStoreComponent
from app.server.chat.service import ChatService
from app.server.chat.utils import OpenAICompletion, OpenAIMessage, to_openai_response
chat_router = APIRouter()
class ChatBody(BaseModel):
messages: list[OpenAIMessage]
include_sources: bool = True
model_config = {
"json_schema_extra": {
"examples": [
{
"messages": [
{
"role": "system",
"content": "You are a rapper. Always answer with a rap.",
},
{
"role": "user",
"content": "How do you fry an egg?",
},
],
"include_sources": True,
}
]
}
}
@chat_router.post(
"/chat",
response_model=None,
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
)
def chat_completion(body: ChatBody) -> OpenAICompletion:
"""Given a list of messages comprising a conversation, return a response.
Optionally include an initial `role: system` message to influence the way
the LLM answers.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
"""
llm_component = LLMComponent()
vector_store_component = VectorStoreComponent()
embedding_component = EmbeddingComponent()
node_store_component = NodeStoreComponent()
chat_service = ChatService(
llm_component, vector_store_component, embedding_component, node_store_component
)
all_messages = [
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
]
completion = chat_service.chat(messages=all_messages)
return to_openai_response(
completion.response, completion.sources if body.include_sources else None
)