import torch import sentencepiece from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from langchain import PromptTemplate, LLMChain, HuggingFacePipeline import ast class Models(): def __init__(self) -> None: self.template = """ A virtual assistant answers questions from a user based on the provided text. USER: Text: {input_text} ASSISTANT: I’ve read this text. USER: What describes {entity_type} in the text? ASSISTANT: """ self.load_trained_models() def load_trained_models(self): #is it best to keep in memory why not pickle? checkpoint = "Universal-NER/UniNER-7B-all" ner_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float16, offload_folder="offload", offload_state_dict = True) tokenizer = AutoTokenizer.from_pretrained("Universal-NER/UniNER-7B-all", use_fast=False, padding="max_length") pipeline = pipeline( "text-generation", #task model=ner_model, max_length=1000, tokenizer=tokenizer, trust_remote_code=True, do_sample=True, top_k=10, num_return_sequences=1 ) self.llm = HuggingFacePipeline(pipeline = pipeline, model_kwargs = {'temperature':0}) self.prompt = PromptTemplate(template=self.template, input_variables=["input_text","entity_type"]) self.llm_chain = LLMChain(prompt=self.prompt, llm=self.llm) def extract_ner(self, context, entity_type): return ast.literal_eval(self.llm_chain.run({"input_text":context,"entity_type":entity_type})) def get_ner(self, clean_lines, entity): tokens = [] try_num = 0 while try_num < 5 and tokens == []: tokens = self.extract_ner(' '.join(clean_lines), entity) if len(tokens) == 0: raise ValueError("Couldnt extract {entity}") return tokens