File size: 4,550 Bytes
6d089f7
0b83d47
 
 
 
 
6d089f7
0b83d47
 
 
 
 
 
 
 
 
6d089f7
0b83d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d089f7
 
0b83d47
 
 
 
 
6d089f7
 
b4c6401
0b83d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d089f7
0b83d47
 
 
6d089f7
0b83d47
 
 
6d089f7
0b83d47
 
 
 
 
6d089f7
0b83d47
 
 
 
 
6d089f7
0b83d47
 
6d089f7
0b83d47
 
 
 
 
6d089f7
0b83d47
 
 
 
 
 
 
 
 
 
 
 
6d089f7
0b83d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d089f7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Generator

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = """
<div>
<h1 style="text-align: center;">SPUM Table Extraction</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/khulaifi95/Llama-3.1-8B-Reason-Blend-888k"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
</div>
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Materials GPT</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
model_id = "khulaifi95/Llama-3.1-8B-Reason-Blend-888k"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]


@spaces.GPU
def chat_llama3_8b(
    message: str, history: list, temperature: float, max_new_tokens: int
) -> Generator[str, None, None]:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(
        model.device
    )

    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
    if temperature == 0:
        generate_kwargs["do_sample"] = False

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        # print(outputs)
        yield "".join(outputs)


# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters", open=False, render=False
        ),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.95,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=512,
                label="Max new tokens",
                render=False,
            ),
        ],
        examples=[
            ["The detonative temperature of this polypropylene is 2000°F."],
            ["The preparation method according to claim 1, characterized in that the SO2 accounts for 30 wt% and the Fe2O3 accounts for 70 wt%."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()