Spaces:
Paused
Paused
Dean
commited on
Commit
·
7200298
1
Parent(s):
5ad6755
First finalized pipeline
Browse filesTODO: Add checkpointing capability
- dvc.lock +2 -2
- dvc.yaml +7 -2
- src/code/custom_data_loading.py +17 -4
- src/code/eval.py +17 -10
- src/code/params.yml +13 -0
- src/code/training.py +20 -12
dvc.lock
CHANGED
@@ -3,8 +3,8 @@ process_data:
|
|
3 |
src/data/processed
|
4 |
deps:
|
5 |
- path: src/code/make_dataset.py
|
6 |
-
md5:
|
7 |
-
size:
|
8 |
- path: src/data/raw/nyu_depth_v2_labeled.mat
|
9 |
md5: 520609c519fba3ba5ac58c8fefcc3530
|
10 |
size: 2972037809
|
|
|
3 |
src/data/processed
|
4 |
deps:
|
5 |
- path: src/code/make_dataset.py
|
6 |
+
md5: e069c7323c9be16baedd8f988375e145
|
7 |
+
size: 5256
|
8 |
- path: src/data/raw/nyu_depth_v2_labeled.mat
|
9 |
md5: 520609c519fba3ba5ac58c8fefcc3530
|
10 |
size: 2972037809
|
dvc.yaml
CHANGED
@@ -11,21 +11,26 @@ stages:
|
|
11 |
train:
|
12 |
cmd: python3 src/code/training.py src/data/processed/train
|
13 |
deps:
|
|
|
|
|
14 |
- src/code/training.py
|
15 |
- src/data/processed/train
|
16 |
outs:
|
17 |
- src/models/
|
|
|
|
|
18 |
metrics:
|
19 |
- logs/train_metrics.csv:
|
20 |
cache: false
|
21 |
eval:
|
22 |
cmd: python3 src/code/eval.py src/data/processed/test
|
23 |
deps:
|
|
|
|
|
|
|
24 |
- src/code/eval.py
|
25 |
- src/models/model.pth
|
26 |
- src/data/processed/test
|
27 |
-
outs:
|
28 |
-
- src/eval/
|
29 |
metrics:
|
30 |
- logs/test_metrics.csv:
|
31 |
cache: false
|
|
|
11 |
train:
|
12 |
cmd: python3 src/code/training.py src/data/processed/train
|
13 |
deps:
|
14 |
+
- src/code/custom_data_loading.py
|
15 |
+
- src/code/params.yml
|
16 |
- src/code/training.py
|
17 |
- src/data/processed/train
|
18 |
outs:
|
19 |
- src/models/
|
20 |
+
- logs/train_params.yml:
|
21 |
+
cache: false
|
22 |
metrics:
|
23 |
- logs/train_metrics.csv:
|
24 |
cache: false
|
25 |
eval:
|
26 |
cmd: python3 src/code/eval.py src/data/processed/test
|
27 |
deps:
|
28 |
+
- src/code/params.yml
|
29 |
+
- src/code/custom_data_loading.py
|
30 |
+
- src/code/eval_metric_calculation.py
|
31 |
- src/code/eval.py
|
32 |
- src/models/model.pth
|
33 |
- src/data/processed/test
|
|
|
|
|
34 |
metrics:
|
35 |
- logs/test_metrics.csv:
|
36 |
cache: false
|
src/code/custom_data_loading.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastai.vision.all import \
|
2 |
DataLoaders, \
|
3 |
delegates, \
|
@@ -7,7 +8,8 @@ from fastai.vision.all import \
|
|
7 |
PILImageBW, \
|
8 |
RandomSplitter, \
|
9 |
Path, \
|
10 |
-
get_files
|
|
|
11 |
|
12 |
|
13 |
class ImageImageDataLoaders(DataLoaders):
|
@@ -33,13 +35,24 @@ def get_y_fn(x):
|
|
33 |
return y
|
34 |
|
35 |
|
36 |
-
def create_data(data_path):
|
|
|
|
|
|
|
37 |
filenames = get_files(data_path, extensions='.jpg')
|
38 |
if len(filenames) == 0:
|
39 |
raise ValueError("Could not find any files in the given path")
|
40 |
dataset = ImageImageDataLoaders.from_label_func(data_path,
|
41 |
-
seed=
|
42 |
-
bs=
|
|
|
43 |
filenames=filenames,
|
44 |
label_func=get_y_fn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return dataset
|
|
|
1 |
+
import yaml
|
2 |
from fastai.vision.all import \
|
3 |
DataLoaders, \
|
4 |
delegates, \
|
|
|
8 |
PILImageBW, \
|
9 |
RandomSplitter, \
|
10 |
Path, \
|
11 |
+
get_files, \
|
12 |
+
L
|
13 |
|
14 |
|
15 |
class ImageImageDataLoaders(DataLoaders):
|
|
|
35 |
return y
|
36 |
|
37 |
|
38 |
+
def create_data(data_path, is_test=False):
|
39 |
+
with open(r"./src/code/params.yml") as f:
|
40 |
+
params = yaml.safe_load(f)
|
41 |
+
|
42 |
filenames = get_files(data_path, extensions='.jpg')
|
43 |
if len(filenames) == 0:
|
44 |
raise ValueError("Could not find any files in the given path")
|
45 |
dataset = ImageImageDataLoaders.from_label_func(data_path,
|
46 |
+
seed=int(params['seed']),
|
47 |
+
bs=int(params['batch_size']),
|
48 |
+
num_workers=int(params['num_workers']),
|
49 |
filenames=filenames,
|
50 |
label_func=get_y_fn)
|
51 |
+
|
52 |
+
if is_test:
|
53 |
+
filenames = get_files(Path(data_path), extensions='.jpg')
|
54 |
+
test_files = L([Path(i) for i in filenames])
|
55 |
+
test_dl = dataset.test_dl(test_files, with_labels=True)
|
56 |
+
return dataset, test_dl
|
57 |
+
|
58 |
return dataset
|
src/code/eval.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import sys
|
2 |
-
|
3 |
-
from
|
4 |
-
from
|
|
|
5 |
from dagshub import dagshub_logger
|
6 |
|
7 |
|
@@ -10,19 +11,24 @@ if __name__ == "__main__":
|
|
10 |
print("usage: %s <test_data_path>" % sys.argv[0], file=sys.stderr)
|
11 |
sys.exit(0)
|
12 |
|
|
|
|
|
|
|
13 |
data_path = Path(sys.argv[1])
|
14 |
-
data = create_data(data_path)
|
|
|
|
|
|
|
15 |
|
16 |
-
filenames = get_files(Path(sys.argv[1]), extensions='.jpg')
|
17 |
-
test_files = L([Path(i) for i in filenames])
|
18 |
-
test_dl = data.test_dl(test_files, with_labels=True)
|
19 |
learner = unet_learner(data,
|
20 |
-
|
21 |
-
n_out=
|
22 |
-
loss_func=
|
23 |
path='src/',
|
24 |
model_dir='models')
|
25 |
learner = learner.load('model')
|
|
|
|
|
26 |
inputs, predictions, targets, decoded = learner.get_preds(dl=test_dl,
|
27 |
with_input=True,
|
28 |
with_decoded=True)
|
@@ -31,6 +37,7 @@ if __name__ == "__main__":
|
|
31 |
decoded_predictions = learner.dls.decode(inputs + tuplify(decoded))[1]
|
32 |
decoded_targets = learner.dls.decode(inputs + tuplify(targets))[1]
|
33 |
|
|
|
34 |
metrics = compute_eval_metrics(decoded_targets.numpy(), decoded_predictions.numpy())
|
35 |
|
36 |
with dagshub_logger(
|
|
|
1 |
import sys
|
2 |
+
import yaml
|
3 |
+
from fastai.vision.all import unet_learner, Path, resnet34, MSELossFlat, tuplify
|
4 |
+
from custom_data_loading import create_data
|
5 |
+
from eval_metric_calculation import compute_eval_metrics
|
6 |
from dagshub import dagshub_logger
|
7 |
|
8 |
|
|
|
11 |
print("usage: %s <test_data_path>" % sys.argv[0], file=sys.stderr)
|
12 |
sys.exit(0)
|
13 |
|
14 |
+
with open(r"./src/code/params.yml") as f:
|
15 |
+
params = yaml.safe_load(f)
|
16 |
+
|
17 |
data_path = Path(sys.argv[1])
|
18 |
+
data, test_dl = create_data(data_path, is_test=True)
|
19 |
+
|
20 |
+
arch = {'resnet34': resnet34}
|
21 |
+
loss = {'MSELossFlat': MSELossFlat()}
|
22 |
|
|
|
|
|
|
|
23 |
learner = unet_learner(data,
|
24 |
+
arch.get(params['architecture']),
|
25 |
+
n_out=int(params['num_outs']),
|
26 |
+
loss_func=loss.get(params['loss_func']),
|
27 |
path='src/',
|
28 |
model_dir='models')
|
29 |
learner = learner.load('model')
|
30 |
+
|
31 |
+
print("Running model on test data...")
|
32 |
inputs, predictions, targets, decoded = learner.get_preds(dl=test_dl,
|
33 |
with_input=True,
|
34 |
with_decoded=True)
|
|
|
37 |
decoded_predictions = learner.dls.decode(inputs + tuplify(decoded))[1]
|
38 |
decoded_targets = learner.dls.decode(inputs + tuplify(targets))[1]
|
39 |
|
40 |
+
print("Calculating metrics...")
|
41 |
metrics = compute_eval_metrics(decoded_targets.numpy(), decoded_predictions.numpy())
|
42 |
|
43 |
with dagshub_logger(
|
src/code/params.yml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 42
|
2 |
+
data: nyu_depth_v2
|
3 |
+
batch_size: 4
|
4 |
+
num_workers: 0
|
5 |
+
weight_decay: 1e-2
|
6 |
+
learning_rate: 1e-3
|
7 |
+
epochs: 1
|
8 |
+
num_outs: 3
|
9 |
+
source_dir: src
|
10 |
+
model_dir: models
|
11 |
+
architecture: resnet34
|
12 |
+
loss_func: MSELossFlat
|
13 |
+
train_metric: rmse
|
src/code/training.py
CHANGED
@@ -3,8 +3,9 @@ Receives 1 arguments from argparse:
|
|
3 |
<data_path> - Path to the dataset which is split into 2 folders - train and test.
|
4 |
"""
|
5 |
import sys
|
|
|
6 |
from fastai.vision.all import unet_learner, Path, resnet34, rmse, MSELossFlat
|
7 |
-
from
|
8 |
from dagshub.fastai import DAGsHubLogger
|
9 |
|
10 |
|
@@ -14,23 +15,30 @@ if __name__ == "__main__":
|
|
14 |
print("usage: %s <data_path>" % sys.argv[0], file=sys.stderr)
|
15 |
sys.exit(0)
|
16 |
|
|
|
|
|
|
|
17 |
data = create_data(Path(sys.argv[1]))
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
learner = unet_learner(data,
|
20 |
-
|
21 |
-
metrics=
|
22 |
-
wd=
|
23 |
-
n_out=
|
24 |
-
loss_func=
|
25 |
-
path='
|
26 |
-
model_dir='
|
27 |
cbs=DAGsHubLogger(
|
28 |
metrics_path="logs/train_metrics.csv",
|
29 |
-
hparams_path="logs/train_params.yml"
|
30 |
-
))
|
31 |
|
32 |
print("Training model...")
|
33 |
-
learner.fine_tune(epochs=
|
|
|
34 |
print("Saving model...")
|
35 |
learner.save('model')
|
36 |
print("Done!")
|
|
|
3 |
<data_path> - Path to the dataset which is split into 2 folders - train and test.
|
4 |
"""
|
5 |
import sys
|
6 |
+
import yaml
|
7 |
from fastai.vision.all import unet_learner, Path, resnet34, rmse, MSELossFlat
|
8 |
+
from custom_data_loading import create_data
|
9 |
from dagshub.fastai import DAGsHubLogger
|
10 |
|
11 |
|
|
|
15 |
print("usage: %s <data_path>" % sys.argv[0], file=sys.stderr)
|
16 |
sys.exit(0)
|
17 |
|
18 |
+
with open(r"./src/code/params.yml") as f:
|
19 |
+
params = yaml.safe_load(f)
|
20 |
+
|
21 |
data = create_data(Path(sys.argv[1]))
|
22 |
+
|
23 |
+
metrics = {'rmse': rmse}
|
24 |
+
arch = {'resnet34': resnet34}
|
25 |
+
loss = {'MSELossFlat': MSELossFlat()}
|
26 |
+
|
27 |
learner = unet_learner(data,
|
28 |
+
arch.get(params['architecture']),
|
29 |
+
metrics=metrics.get(params['train_metric']),
|
30 |
+
wd=float(params['weight_decay']),
|
31 |
+
n_out=int(params['num_outs']),
|
32 |
+
loss_func=loss.get(params['loss_func']),
|
33 |
+
path=params['source_dir'],
|
34 |
+
model_dir=params['model_dir'],
|
35 |
cbs=DAGsHubLogger(
|
36 |
metrics_path="logs/train_metrics.csv",
|
37 |
+
hparams_path="logs/train_params.yml"))
|
|
|
38 |
|
39 |
print("Training model...")
|
40 |
+
learner.fine_tune(epochs=int(params['epochs']),
|
41 |
+
base_lr=float(params['learning_rate']))
|
42 |
print("Saving model...")
|
43 |
learner.save('model')
|
44 |
print("Done!")
|