Spaces:
Runtime error
Runtime error
File size: 2,200 Bytes
30099ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# coding=utf-8
# Copyright 2022 rinna Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, List
import torch
from transformers import T5Tokenizer
def load_tokenizer():
"""
https://huggingface.co/rinna/japanese-roberta-base
"""
tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-roberta-base")
tokenizer.do_lower_case = True # due to some bug of tokenizer config loading
return tokenizer
def tokenize(
texts: Union[str, List[str]],
tokenizer: T5Tokenizer = None,
max_seq_len: int = 77,
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
):
"""
This is a function that have the original clip's code has.
https://github.com/openai/CLIP/blob/main/clip/clip.py#L195
"""
if isinstance(texts, str):
texts = [texts]
if tokenizer is None:
tokenizer = load_tokenizer()
inputs = tokenizer(
texts,
max_length=max_seq_len-1,
padding="max_length",
truncation=True,
add_special_tokens=False,
)
# add cls token at first place
input_ids = [[tokenizer.cls_token_id] + ids for ids in inputs['input_ids']]
attention_mask = [[1] + am for am in inputs['attention_mask']]
position_ids = [list(range(0, len(input_ids[0])))] * len(texts)
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
position_ids = torch.tensor(position_ids, dtype=torch.long)
return {
"input_ids": input_ids.to(device),
"attention_mask": attention_mask.to(device),
"position_ids": position_ids.to(device),
}
|