# coding=utf-8 # Copyright 2022 rinna Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F def cloob_loss(image_features, text_features, inv_tau, scale_hopfield): """ Note: this loss has been rescaled from the original CLOOB loss for interpretability, to convert to the original, divide it by inv_tau / 2. """ p_xx, p_yy, p_xy, p_yx = hopfield_retrieval(image_features, text_features, scale_hopfield) identity = torch.eye(p_xx.shape[1]) > 0.5 i = identity.to(p_xx.device) loss_img = infoLOOB_loss(p_xx.T, p_xy.T, i, inv_tau=inv_tau) loss_txt = infoLOOB_loss(p_yy.T, p_yx.T, i, inv_tau=inv_tau) return (loss_img + loss_txt) / 2 def infoLOOB_loss(x, y, i, inv_tau): tau = 1 / inv_tau k = x @ y.T / tau positives = -torch.mean(torch.sum(k * i, dim=1)) # For logsumexp the zero entries must be equal to a very large negative number large_neg = -10000.0 arg_lse = k * torch.logical_not(i) + i * large_neg negatives = torch.mean(torch.logsumexp(arg_lse, dim=1)) return positives + negatives def hopfield_retrieval(image_features, text_features, scale_hopfield): patterns_xx = hopfield(state_patterns=image_features, stored_patterns=image_features, scale_hopfield=scale_hopfield) patterns_yy = hopfield(state_patterns=text_features, stored_patterns=text_features, scale_hopfield=scale_hopfield) patterns_xy = hopfield(state_patterns=text_features, stored_patterns=image_features, scale_hopfield=scale_hopfield) patterns_yx = hopfield(state_patterns=image_features, stored_patterns=text_features, scale_hopfield=scale_hopfield) return patterns_xx, patterns_yy, patterns_xy, patterns_yx def hopfield(state_patterns, stored_patterns, scale_hopfield): retrieved_patterns = stored_patterns.T @ F.softmax(scale_hopfield * stored_patterns @ state_patterns.T, dim=0) # Row vectors -> dim=1 to normalize the row vectors retrieved_patterns = retrieved_patterns / retrieved_patterns.norm(dim=0, keepdim=True) return retrieved_patterns