File size: 9,119 Bytes
e968589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
'''
Cherry picked from Roshan's PR https://github.com/nahidalam/LLaVA/blob/1ecc141d7f20f16518f38a0d99320268305c17c3/llava/eval/maya/eval_utils.py
'''

import os
import sys
import torch
import requests
from io import BytesIO
from PIL import Image


from transformers import AutoTokenizer, AutoConfig, TextStreamer
from transformers.models.cohere.tokenization_cohere_fast import CohereTokenizerFast
from model.language_model.llava_cohere import LlavaCohereForCausalLM, LlavaCohereConfig
from constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
from conversation import conv_templates, SeparatorStyle
from mm_utils import process_images, tokenizer_image_token, get_model_name_from_path

from typing import Optional, Literal


def load_maya_model(model_base: str, model_path : str, projector_path : Optional[str] = None, mode = Literal['pretrained','finetuned']):

    """ Function that helps load a trained Maya model

    Trained Maya model can be of two flavors :
    1. Pretrained : The model has only gone through pretraining and the changes are restricted to the projector layer
    2. Finetuned : Model has gone through instruction finetuning post pretraining stage. This affects the whole model

    This is a replication of the load_pretrained_model function from llava.model.builder thats specific to Cohere/Maya

    Args:
        model_base : Path of the base LLM model in HF. Eg: 'CohereForAI/aya-23-8B', 'meta-llama/Meta-Llama-3-8B-Instruct'.
                     This is used to instantiate the tokenizer and the model (in case of loading the pretrained model)
        model_path : Path of the trained model repo in HF. Eg : 'nahidalam/Maya'
                     This is used to load the config file. So this path/directory should have the config.json file
                     For the finetuned model, this is used to load the final model weights as well
        projector_path : For the pretrained model, this represents the path to the local directory which holds the mm_projector.bin file
        model : Helps specify if this is loading a pretrained only model or a finetuned model

    Returns:
       model: LlavaCohereForCausalLM object
       tokenizer: CohereTokenizerFast object
       image_processor:
       content_len:
    """

    device_map = 'auto'
    kwargs = {"device_map": device_map}
    kwargs['torch_dtype'] = torch.float32
    # kwargs['attn_implementation'] = 'flash_attention_2'

    ## Instantiating tokenizer and model base
    tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
    cfg_pretrained = LlavaCohereConfig.from_pretrained(model_path)

    if mode == 'pretrained':
        model = LlavaCohereForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)

        ## Loading Projector layer weights
        mm_projector_weights = torch.load(projector_path, map_location='cpu')
        mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
        model.load_state_dict(mm_projector_weights, strict=False)
    else:
        # Load model with ignore_mismatched_sizes to handle vision tower weights
        model = LlavaCohereForCausalLM.from_pretrained(
            model_path, 
            config=cfg_pretrained,
            ignore_mismatched_sizes=True,  # Add this to handle vision tower weights
            **kwargs
        )

    ## Loading image processor
    image_processor = None

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    # Get and load vision tower
    vision_tower = model.get_vision_tower()
    if vision_tower is None:
        raise ValueError("Vision tower not found in model config")
        
    print(f"Loading vision tower... Is loaded: {vision_tower.is_loaded}")
    if not vision_tower.is_loaded:
        try:
            vision_tower.load_model()
            print("Vision tower loaded successfully")
        except Exception as e:
            print(f"Error loading vision tower: {str(e)}")
            raise
            
    if device_map != 'auto':
        vision_tower.to(device=device_map, dtype=torch.float16)
    image_processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    #maya = MayaModel(model, tokenizer, image_processor, context_len)

    return model, tokenizer, image_processor, context_len


class MayaModel(object):

    def __init__(self, model : LlavaCohereForCausalLM, tokenizer : CohereTokenizerFast, image_processor, context_length):
        self.model = model
        self.tokenizer = tokenizer
        self.image_processor = image_processor
        self.context_length = context_length

    def validate_inputs(self):
        """
        Method to validate the inputs
        """
        pass




def load_image(image_input):
    """
    Convert various image inputs to a PIL Image object.

    :param image_input: Can be a URL string, a file path string, or image bytes
    :return: PIL Image object
    """
    try:
        if isinstance(image_input, str):
            if image_input.startswith(('http://', 'https://')):
                # Input is a URL
                response = requests.get(image_input)
                response.raise_for_status()  # Raise an exception for bad responses
                return Image.open(BytesIO(response.content))
            elif os.path.isfile(image_input):
                # Input is a file path
                return Image.open(image_input)
            else:
                raise ValueError("Invalid input: string is neither a valid URL nor a file path")
        elif isinstance(image_input, bytes):
            # Input is bytes
            return Image.open(BytesIO(image_input))
        else:
            raise ValueError("Invalid input type. Expected URL string, file path string, or bytes.")
    except requests.RequestException as e:
        raise ValueError(f"Error fetching image from URL: {e}")
    except IOError as e:
        raise ValueError(f"Error opening image file: {e}")
    except Exception as e:
        raise ValueError(f"An unexpected error occurred: {e}")




def get_single_sample_prediction(maya_model, image_file, user_question, temperature = 0.0, max_new_tokens = 100, conv_mode = 'aya'):
    """Generates the prediction for a single image-user question pair.

    Args:
        model (MayaModel): Trained Maya model
        image_file : One of the following: Online image url, local image path, or image bytes
        user_question (str): Question to be shared with LLM
        temperature (float, optional): Temperature param for LLMs.  Defaults to 0.0.
        max_new_tokens (int, optional): Max new number of tokens generated. Defaults to 100
        conv_model (str, optional): Conversation model to be used. Defaults to 'aya'.

    Returns:
        output (str): Model's response to user question
    """


    conv = conv_templates[conv_mode].copy()
    roles = conv.roles
    model = maya_model.model
    tokenizer = maya_model.tokenizer
    image_processor = maya_model.image_processor

    image = load_image(image_file)
    image_size = image.size

    image_tensor = process_images([image], image_processor, model.config)
    if type(image_tensor) is list:
        image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
    else:
        image_tensor = image_tensor.to(model.device, dtype=torch.float16)

    inp = user_question

    if image is not None:
        # first message
        if model.config.mm_use_im_start_end:
            inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
        else:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
        # image = None

    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            image_sizes=[image_size],
            do_sample=True if temperature > 0 else False,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            use_cache=True)

    outputs = tokenizer.decode(output_ids[0]).strip()

    return outputs