Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,317 Bytes
29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb 25a8011 29421eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
from __future__ import print_function
# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py`.
import datetime
import locale
import re
import subprocess
import sys
import os
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple(
"SystemEnv",
[
"torch_version",
"is_debug_build",
"cuda_compiled_version",
"gcc_version",
"clang_version",
"cmake_version",
"os",
"libc_version",
"python_version",
"python_platform",
"is_cuda_available",
"cuda_runtime_version",
"nvidia_driver_version",
"nvidia_gpu_models",
"cudnn_version",
"pip_version", # 'pip' or 'pip3'
"pip_packages",
"conda_packages",
"hip_compiled_version",
"hip_runtime_version",
"miopen_runtime_version",
"caching_allocator_config",
"is_xnnpack_available",
],
)
def run(command):
"""Returns (return-code, stdout, stderr)"""
p = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True
)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == "win32":
enc = "oem"
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
err = raw_err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Runs command using run_lambda; reads and returns entire output if rc is 0"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Runs command using run_lambda, returns the first regex match if it exists"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def run_and_return_first_line(run_lambda, command):
"""Runs command using run_lambda and returns first line if output is not empty"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out.split("\n")[0]
def get_conda_packages(run_lambda):
conda = os.environ.get("CONDA_EXE", "conda")
out = run_and_read_all(run_lambda, "{} list".format(conda))
if out is None:
return out
return "\n".join(
line
for line in out.splitlines()
if not line.startswith("#")
and any(
name in line
for name in {
"torch",
"numpy",
"cudatoolkit",
"soumith",
"mkl",
"magma",
"mkl",
}
)
)
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")
def get_clang_version(run_lambda):
return run_and_parse_first_match(
run_lambda, "clang --version", r"clang version (.*)"
)
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")
def get_nvidia_driver_version(run_lambda):
if get_platform() == "darwin":
cmd = "kextstat | grep -i cuda"
return run_and_parse_first_match(
run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]"
)
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")
def get_gpu_info(run_lambda):
if get_platform() == "darwin" or (
TORCH_AVAILABLE
and hasattr(torch.version, "hip")
and torch.version.hip is not None
):
if TORCH_AVAILABLE and torch.cuda.is_available():
return torch.cuda.get_device_name(None)
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r" \(UUID: .+?\)")
rc, out, _ = run_lambda(smi + " -L")
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, "", out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")
def get_cudnn_version(run_lambda):
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
if get_platform() == "win32":
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
where_cmd = os.path.join(system_root, "System32", "where")
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == "darwin":
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get("CUDNN_LIBRARY")
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split("\n"):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = list(sorted(files_set))
if len(files) == 1:
return files[0]
result = "\n".join(files)
return "Probably one of the following:\n{}".format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = "nvidia-smi"
if get_platform() == "win32":
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
legacy_path = os.path.join(
program_files_root, "NVIDIA Corporation", "NVSMI", smi
)
new_path = os.path.join(system_root, "System32", smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = '"{}"'.format(candidate_smi)
break
return smi
def get_platform():
if sys.platform.startswith("linux"):
return "linux"
elif sys.platform.startswith("win32"):
return "win32"
elif sys.platform.startswith("cygwin"):
return "cygwin"
elif sys.platform.startswith("darwin"):
return "darwin"
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")
def get_windows_version(run_lambda):
system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
findstr_cmd = os.path.join(system_root, "System32", "findstr")
return run_and_read_all(
run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd)
)
def get_lsb_version(run_lambda):
return run_and_parse_first_match(
run_lambda, "lsb_release -a", r"Description:\t(.*)"
)
def check_release_file(run_lambda):
return run_and_parse_first_match(
run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"'
)
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == "win32" or platform == "cygwin":
return get_windows_version(run_lambda)
if platform == "darwin":
version = get_mac_version(run_lambda)
if version is None:
return None
return "macOS {} ({})".format(version, machine())
if platform == "linux":
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return "{} ({})".format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return "{} ({})".format(desc, machine())
return "{} ({})".format(platform, machine())
# Unknown platform
return platform
def get_python_platform():
import platform
return platform.platform()
def get_libc_version():
import platform
if get_platform() != "linux":
return "N/A"
return "-".join(platform.libc_ver())
def get_pip_packages(run_lambda):
"""Returns `pip list` output. Note: will also find conda-installed pytorch
and numpy packages."""
# People generally have `pip` as `pip` or `pip3`
# But here it is incoved as `python -mpip`
def run_with_pip(pip):
out = run_and_read_all(run_lambda, "{} list --format=freeze".format(pip))
return "\n".join(
line
for line in out.splitlines()
if any(
name in line
for name in {
"torch",
"numpy",
"mypy",
}
)
)
pip_version = "pip3" if sys.version[0] == "3" else "pip"
out = run_with_pip(sys.executable + " -mpip")
return pip_version, out
def get_cachingallocator_config():
ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "")
return ca_config
def is_xnnpack_available():
if TORCH_AVAILABLE:
import torch.backends.xnnpack
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
else:
return "N/A"
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
if (
not hasattr(torch.version, "hip") or torch.version.hip is None
): # cuda version
hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"
else: # HIP version
cfg = torch._C._show_config().split("\n")
hip_runtime_version = [
s.rsplit(None, 1)[-1] for s in cfg if "HIP Runtime" in s
][0]
miopen_runtime_version = [
s.rsplit(None, 1)[-1] for s in cfg if "MIOpen" in s
][0]
cuda_version_str = "N/A"
hip_compiled_version = torch.version.hip
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = "N/A"
hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"
sys_version = sys.version.replace("\n", " ")
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version="{} ({}-bit runtime)".format(
sys_version, sys.maxsize.bit_length() + 1
),
python_platform=get_python_platform(),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
hip_compiled_version=hip_compiled_version,
hip_runtime_version=hip_runtime_version,
miopen_runtime_version=miopen_runtime_version,
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=get_conda_packages(run_lambda),
os=get_os(run_lambda),
libc_version=get_libc_version(),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
caching_allocator_config=get_cachingallocator_config(),
is_xnnpack_available=is_xnnpack_available(),
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}
OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Libc version: {libc_version}
Python version: {python_version}
Python platform: {python_platform}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Is XNNPACK available: {is_xnnpack_available}
Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement="Could not collect"):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true="Yes", false="No"):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag="[prepend]"):
lines = text.split("\n")
updated_lines = [tag + line for line in lines]
return "\n".join(updated_lines)
def replace_if_empty(text, replacement="No relevant packages"):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split("\n")) > 1:
return "\n{}\n".format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(
envinfo.nvidia_gpu_models
)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
"cuda_runtime_version",
"nvidia_gpu_models",
"nvidia_driver_version",
]
all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
all_dynamic_cuda_fields_missing = all(
mutable_dict[field] is None for field in dynamic_cuda_fields
)
if (
TORCH_AVAILABLE
and not torch.cuda.is_available()
and all_dynamic_cuda_fields_missing
):
for field in all_cuda_fields:
mutable_dict[field] = "No CUDA"
if envinfo.cuda_compiled_version is None:
mutable_dict["cuda_compiled_version"] = "None"
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
# If either of these are '', replace with 'No relevant packages'
mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])
# Tag conda and pip packages with a prefix
# If they were previously None, they'll show up as ie '[conda] Could not collect'
if mutable_dict["pip_packages"]:
mutable_dict["pip_packages"] = prepend(
mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version)
)
if mutable_dict["conda_packages"]:
mutable_dict["conda_packages"] = prepend(
mutable_dict["conda_packages"], "[conda] "
)
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if (
TORCH_AVAILABLE
and hasattr(torch, "utils")
and hasattr(torch.utils, "_crash_handler")
):
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
if sys.platform == "linux" and os.path.exists(minidump_dir):
dumps = [
os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)
]
latest = max(dumps, key=os.path.getctime)
ctime = os.path.getctime(latest)
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
"%Y-%m-%d %H:%M:%S"
)
msg = (
"\n*** Detected a minidump at {} created on {}, ".format(
latest, creation_time
)
+ "if this is related to your bug please include it when you file a report ***"
)
print(msg, file=sys.stderr)
if __name__ == "__main__":
main()
|