File size: 17,317 Bytes
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
29421eb
 
 
 
 
25a8011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29421eb
 
 
 
25a8011
 
 
29421eb
 
25a8011
 
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
29421eb
 
 
 
 
25a8011
29421eb
 
 
25a8011
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
29421eb
25a8011
 
29421eb
 
25a8011
 
 
29421eb
 
 
25a8011
29421eb
 
 
25a8011
 
 
 
 
29421eb
25a8011
29421eb
 
 
25a8011
 
 
 
 
29421eb
 
 
 
25a8011
 
29421eb
 
 
25a8011
29421eb
 
 
25a8011
29421eb
 
 
 
25a8011
 
 
 
29421eb
25a8011
29421eb
 
 
 
25a8011
29421eb
 
 
 
 
25a8011
29421eb
 
 
 
25a8011
29421eb
 
 
 
 
 
 
 
 
25a8011
 
29421eb
 
 
 
25a8011
 
 
 
 
 
 
 
29421eb
 
 
 
 
 
 
 
 
25a8011
 
 
 
 
 
 
 
29421eb
 
 
 
 
25a8011
29421eb
 
 
25a8011
 
 
 
 
 
29421eb
 
 
25a8011
 
 
29421eb
 
 
25a8011
 
 
29421eb
 
 
 
25a8011
29421eb
 
25a8011
29421eb
 
25a8011
29421eb
 
 
25a8011
29421eb
25a8011
29421eb
 
 
25a8011
29421eb
 
 
 
25a8011
29421eb
25a8011
29421eb
 
 
 
 
 
 
25a8011
29421eb
 
 
 
 
25a8011
 
 
 
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
 
29421eb
 
 
 
 
25a8011
29421eb
 
25a8011
29421eb
 
 
25a8011
29421eb
 
 
 
25a8011
29421eb
 
 
 
 
 
 
 
 
25a8011
 
 
 
29421eb
25a8011
 
 
 
 
 
 
 
29421eb
 
25a8011
 
29421eb
 
 
 
 
 
25a8011
 
 
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
29421eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a8011
29421eb
 
 
 
 
 
25a8011
29421eb
 
 
 
 
 
 
25a8011
 
29421eb
25a8011
29421eb
25a8011
29421eb
 
 
 
 
 
25a8011
 
29421eb
 
 
 
 
25a8011
 
 
29421eb
 
 
25a8011
 
 
29421eb
25a8011
29421eb
25a8011
 
 
 
 
 
 
29421eb
25a8011
29421eb
25a8011
29421eb
 
 
 
 
 
 
 
25a8011
 
29421eb
 
 
25a8011
 
 
 
 
 
 
 
29421eb
 
 
 
 
 
 
 
 
 
 
 
25a8011
 
 
 
 
29421eb
 
25a8011
 
 
29421eb
 
25a8011
 
 
 
 
 
 
 
 
29421eb
 
 
25a8011
29421eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
from __future__ import print_function

# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py`.
import datetime
import locale
import re
import subprocess
import sys
import os
from collections import namedtuple


try:
    import torch

    TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
    TORCH_AVAILABLE = False

# System Environment Information
SystemEnv = namedtuple(
    "SystemEnv",
    [
        "torch_version",
        "is_debug_build",
        "cuda_compiled_version",
        "gcc_version",
        "clang_version",
        "cmake_version",
        "os",
        "libc_version",
        "python_version",
        "python_platform",
        "is_cuda_available",
        "cuda_runtime_version",
        "nvidia_driver_version",
        "nvidia_gpu_models",
        "cudnn_version",
        "pip_version",  # 'pip' or 'pip3'
        "pip_packages",
        "conda_packages",
        "hip_compiled_version",
        "hip_runtime_version",
        "miopen_runtime_version",
        "caching_allocator_config",
        "is_xnnpack_available",
    ],
)


def run(command):
    """Returns (return-code, stdout, stderr)"""
    p = subprocess.Popen(
        command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True
    )
    raw_output, raw_err = p.communicate()
    rc = p.returncode
    if get_platform() == "win32":
        enc = "oem"
    else:
        enc = locale.getpreferredencoding()
    output = raw_output.decode(enc)
    err = raw_err.decode(enc)
    return rc, output.strip(), err.strip()


def run_and_read_all(run_lambda, command):
    """Runs command using run_lambda; reads and returns entire output if rc is 0"""
    rc, out, _ = run_lambda(command)
    if rc != 0:
        return None
    return out


def run_and_parse_first_match(run_lambda, command, regex):
    """Runs command using run_lambda, returns the first regex match if it exists"""
    rc, out, _ = run_lambda(command)
    if rc != 0:
        return None
    match = re.search(regex, out)
    if match is None:
        return None
    return match.group(1)


def run_and_return_first_line(run_lambda, command):
    """Runs command using run_lambda and returns first line if output is not empty"""
    rc, out, _ = run_lambda(command)
    if rc != 0:
        return None
    return out.split("\n")[0]


def get_conda_packages(run_lambda):
    conda = os.environ.get("CONDA_EXE", "conda")
    out = run_and_read_all(run_lambda, "{} list".format(conda))
    if out is None:
        return out

    return "\n".join(
        line
        for line in out.splitlines()
        if not line.startswith("#")
        and any(
            name in line
            for name in {
                "torch",
                "numpy",
                "cudatoolkit",
                "soumith",
                "mkl",
                "magma",
                "mkl",
            }
        )
    )


def get_gcc_version(run_lambda):
    return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)")


def get_clang_version(run_lambda):
    return run_and_parse_first_match(
        run_lambda, "clang --version", r"clang version (.*)"
    )


def get_cmake_version(run_lambda):
    return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)")


def get_nvidia_driver_version(run_lambda):
    if get_platform() == "darwin":
        cmd = "kextstat | grep -i cuda"
        return run_and_parse_first_match(
            run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]"
        )
    smi = get_nvidia_smi()
    return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ")


def get_gpu_info(run_lambda):
    if get_platform() == "darwin" or (
        TORCH_AVAILABLE
        and hasattr(torch.version, "hip")
        and torch.version.hip is not None
    ):
        if TORCH_AVAILABLE and torch.cuda.is_available():
            return torch.cuda.get_device_name(None)
        return None
    smi = get_nvidia_smi()
    uuid_regex = re.compile(r" \(UUID: .+?\)")
    rc, out, _ = run_lambda(smi + " -L")
    if rc != 0:
        return None
    # Anonymize GPUs by removing their UUID
    return re.sub(uuid_regex, "", out)


def get_running_cuda_version(run_lambda):
    return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)")


def get_cudnn_version(run_lambda):
    """This will return a list of libcudnn.so; it's hard to tell which one is being used"""
    if get_platform() == "win32":
        system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
        cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%")
        where_cmd = os.path.join(system_root, "System32", "where")
        cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
    elif get_platform() == "darwin":
        # CUDA libraries and drivers can be found in /usr/local/cuda/. See
        # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
        # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
        # Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
        cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*"
    else:
        cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
    rc, out, _ = run_lambda(cudnn_cmd)
    # find will return 1 if there are permission errors or if not found
    if len(out) == 0 or (rc != 1 and rc != 0):
        l = os.environ.get("CUDNN_LIBRARY")
        if l is not None and os.path.isfile(l):
            return os.path.realpath(l)
        return None
    files_set = set()
    for fn in out.split("\n"):
        fn = os.path.realpath(fn)  # eliminate symbolic links
        if os.path.isfile(fn):
            files_set.add(fn)
    if not files_set:
        return None
    # Alphabetize the result because the order is non-deterministic otherwise
    files = list(sorted(files_set))
    if len(files) == 1:
        return files[0]
    result = "\n".join(files)
    return "Probably one of the following:\n{}".format(result)


def get_nvidia_smi():
    # Note: nvidia-smi is currently available only on Windows and Linux
    smi = "nvidia-smi"
    if get_platform() == "win32":
        system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
        program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files")
        legacy_path = os.path.join(
            program_files_root, "NVIDIA Corporation", "NVSMI", smi
        )
        new_path = os.path.join(system_root, "System32", smi)
        smis = [new_path, legacy_path]
        for candidate_smi in smis:
            if os.path.exists(candidate_smi):
                smi = '"{}"'.format(candidate_smi)
                break
    return smi


def get_platform():
    if sys.platform.startswith("linux"):
        return "linux"
    elif sys.platform.startswith("win32"):
        return "win32"
    elif sys.platform.startswith("cygwin"):
        return "cygwin"
    elif sys.platform.startswith("darwin"):
        return "darwin"
    else:
        return sys.platform


def get_mac_version(run_lambda):
    return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)")


def get_windows_version(run_lambda):
    system_root = os.environ.get("SYSTEMROOT", "C:\\Windows")
    wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic")
    findstr_cmd = os.path.join(system_root, "System32", "findstr")
    return run_and_read_all(
        run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd)
    )


def get_lsb_version(run_lambda):
    return run_and_parse_first_match(
        run_lambda, "lsb_release -a", r"Description:\t(.*)"
    )


def check_release_file(run_lambda):
    return run_and_parse_first_match(
        run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"'
    )


def get_os(run_lambda):
    from platform import machine

    platform = get_platform()

    if platform == "win32" or platform == "cygwin":
        return get_windows_version(run_lambda)

    if platform == "darwin":
        version = get_mac_version(run_lambda)
        if version is None:
            return None
        return "macOS {} ({})".format(version, machine())

    if platform == "linux":
        # Ubuntu/Debian based
        desc = get_lsb_version(run_lambda)
        if desc is not None:
            return "{} ({})".format(desc, machine())

        # Try reading /etc/*-release
        desc = check_release_file(run_lambda)
        if desc is not None:
            return "{} ({})".format(desc, machine())

        return "{} ({})".format(platform, machine())

    # Unknown platform
    return platform


def get_python_platform():
    import platform

    return platform.platform()


def get_libc_version():
    import platform

    if get_platform() != "linux":
        return "N/A"
    return "-".join(platform.libc_ver())


def get_pip_packages(run_lambda):
    """Returns `pip list` output. Note: will also find conda-installed pytorch
    and numpy packages."""
    # People generally have `pip` as `pip` or `pip3`
    # But here it is incoved as `python -mpip`
    def run_with_pip(pip):
        out = run_and_read_all(run_lambda, "{} list --format=freeze".format(pip))
        return "\n".join(
            line
            for line in out.splitlines()
            if any(
                name in line
                for name in {
                    "torch",
                    "numpy",
                    "mypy",
                }
            )
        )

    pip_version = "pip3" if sys.version[0] == "3" else "pip"
    out = run_with_pip(sys.executable + " -mpip")

    return pip_version, out


def get_cachingallocator_config():
    ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "")
    return ca_config


def is_xnnpack_available():
    if TORCH_AVAILABLE:
        import torch.backends.xnnpack

        return str(torch.backends.xnnpack.enabled)  # type: ignore[attr-defined]
    else:
        return "N/A"


def get_env_info():
    run_lambda = run
    pip_version, pip_list_output = get_pip_packages(run_lambda)

    if TORCH_AVAILABLE:
        version_str = torch.__version__
        debug_mode_str = str(torch.version.debug)
        cuda_available_str = str(torch.cuda.is_available())
        cuda_version_str = torch.version.cuda
        if (
            not hasattr(torch.version, "hip") or torch.version.hip is None
        ):  # cuda version
            hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"
        else:  # HIP version
            cfg = torch._C._show_config().split("\n")
            hip_runtime_version = [
                s.rsplit(None, 1)[-1] for s in cfg if "HIP Runtime" in s
            ][0]
            miopen_runtime_version = [
                s.rsplit(None, 1)[-1] for s in cfg if "MIOpen" in s
            ][0]
            cuda_version_str = "N/A"
            hip_compiled_version = torch.version.hip
    else:
        version_str = debug_mode_str = cuda_available_str = cuda_version_str = "N/A"
        hip_compiled_version = hip_runtime_version = miopen_runtime_version = "N/A"

    sys_version = sys.version.replace("\n", " ")

    return SystemEnv(
        torch_version=version_str,
        is_debug_build=debug_mode_str,
        python_version="{} ({}-bit runtime)".format(
            sys_version, sys.maxsize.bit_length() + 1
        ),
        python_platform=get_python_platform(),
        is_cuda_available=cuda_available_str,
        cuda_compiled_version=cuda_version_str,
        cuda_runtime_version=get_running_cuda_version(run_lambda),
        nvidia_gpu_models=get_gpu_info(run_lambda),
        nvidia_driver_version=get_nvidia_driver_version(run_lambda),
        cudnn_version=get_cudnn_version(run_lambda),
        hip_compiled_version=hip_compiled_version,
        hip_runtime_version=hip_runtime_version,
        miopen_runtime_version=miopen_runtime_version,
        pip_version=pip_version,
        pip_packages=pip_list_output,
        conda_packages=get_conda_packages(run_lambda),
        os=get_os(run_lambda),
        libc_version=get_libc_version(),
        gcc_version=get_gcc_version(run_lambda),
        clang_version=get_clang_version(run_lambda),
        cmake_version=get_cmake_version(run_lambda),
        caching_allocator_config=get_cachingallocator_config(),
        is_xnnpack_available=is_xnnpack_available(),
    )


env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}

OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Libc version: {libc_version}

Python version: {python_version}
Python platform: {python_platform}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Is XNNPACK available: {is_xnnpack_available}

Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()


def pretty_str(envinfo):
    def replace_nones(dct, replacement="Could not collect"):
        for key in dct.keys():
            if dct[key] is not None:
                continue
            dct[key] = replacement
        return dct

    def replace_bools(dct, true="Yes", false="No"):
        for key in dct.keys():
            if dct[key] is True:
                dct[key] = true
            elif dct[key] is False:
                dct[key] = false
        return dct

    def prepend(text, tag="[prepend]"):
        lines = text.split("\n")
        updated_lines = [tag + line for line in lines]
        return "\n".join(updated_lines)

    def replace_if_empty(text, replacement="No relevant packages"):
        if text is not None and len(text) == 0:
            return replacement
        return text

    def maybe_start_on_next_line(string):
        # If `string` is multiline, prepend a \n to it.
        if string is not None and len(string.split("\n")) > 1:
            return "\n{}\n".format(string)
        return string

    mutable_dict = envinfo._asdict()

    # If nvidia_gpu_models is multiline, start on the next line
    mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(
        envinfo.nvidia_gpu_models
    )

    # If the machine doesn't have CUDA, report some fields as 'No CUDA'
    dynamic_cuda_fields = [
        "cuda_runtime_version",
        "nvidia_gpu_models",
        "nvidia_driver_version",
    ]
    all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"]
    all_dynamic_cuda_fields_missing = all(
        mutable_dict[field] is None for field in dynamic_cuda_fields
    )
    if (
        TORCH_AVAILABLE
        and not torch.cuda.is_available()
        and all_dynamic_cuda_fields_missing
    ):
        for field in all_cuda_fields:
            mutable_dict[field] = "No CUDA"
        if envinfo.cuda_compiled_version is None:
            mutable_dict["cuda_compiled_version"] = "None"

    # Replace True with Yes, False with No
    mutable_dict = replace_bools(mutable_dict)

    # Replace all None objects with 'Could not collect'
    mutable_dict = replace_nones(mutable_dict)

    # If either of these are '', replace with 'No relevant packages'
    mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"])
    mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"])

    # Tag conda and pip packages with a prefix
    # If they were previously None, they'll show up as ie '[conda] Could not collect'
    if mutable_dict["pip_packages"]:
        mutable_dict["pip_packages"] = prepend(
            mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version)
        )
    if mutable_dict["conda_packages"]:
        mutable_dict["conda_packages"] = prepend(
            mutable_dict["conda_packages"], "[conda] "
        )
    return env_info_fmt.format(**mutable_dict)


def get_pretty_env_info():
    return pretty_str(get_env_info())


def main():
    print("Collecting environment information...")
    output = get_pretty_env_info()
    print(output)

    if (
        TORCH_AVAILABLE
        and hasattr(torch, "utils")
        and hasattr(torch.utils, "_crash_handler")
    ):
        minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
        if sys.platform == "linux" and os.path.exists(minidump_dir):
            dumps = [
                os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)
            ]
            latest = max(dumps, key=os.path.getctime)
            ctime = os.path.getctime(latest)
            creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
                "%Y-%m-%d %H:%M:%S"
            )
            msg = (
                "\n*** Detected a minidump at {} created on {}, ".format(
                    latest, creation_time
                )
                + "if this is related to your bug please include it when you file a report ***"
            )
            print(msg, file=sys.stderr)


if __name__ == "__main__":
    main()