import os from math import floor from typing import Optional import spaces import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read # configuration MODEL_NAME = "japanese-asr/distil-whisper-bilingual-v1.0" BATCH_SIZE = 16 CHUNK_LENGTH_S = 15 # device setting if torch.cuda.is_available(): torch_dtype = torch.bfloat16 device = "cuda" model_kwargs = {'attn_implementation': 'sdpa'} else: torch_dtype = torch.float32 device = "cpu" model_kwargs = {} # define the pipeline pipe = pipeline( model=MODEL_NAME, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE, torch_dtype=torch_dtype, device=device, model_kwargs=model_kwargs, trust_remote_code=True ) def format_time(start: Optional[float], end: Optional[float]): def _format_time(seconds: Optional[float]): if seconds is None: return "complete " minutes = floor(seconds / 60) hours = floor(seconds / 3600) seconds = seconds - hours * 3600 - minutes * 60 m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3) seconds = floor(seconds) return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}' return f"[{_format_time(start)}-> {_format_time(end)}]:" @spaces.GPU def get_prediction(inputs, task: str, language: Optional[str]): generate_kwargs = {"task": task} if language: generate_kwargs['language'] = language prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs) text = "".join([c['text'] for c in prediction['chunks']]) text_timestamped = "\n".join([ f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks'] ]) return text, text_timestamped def transcribe(inputs: str, task: str, language: str): language = None if language == "none" else language if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") with open(inputs, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} return get_prediction(inputs, task, language) demo = gr.Blocks() description = (f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper " f"checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio" f" files of arbitrary length.") title = f"Transcribe Audio with {os.path.basename(MODEL_NAME)}" mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Textbox(lines=1, placeholder="Prompt"), gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.Radio(["none", "ja", "en"], label="Language", default="none") ], outputs=["text", "text"], title=title, description=description, allow_flagging="never", ) file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Textbox(lines=1, placeholder="Prompt"), gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.Radio(["none", "ja", "en"], label="Language", default="none") ], outputs=["text", "text"], title=title, description=description, allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)