File size: 1,190 Bytes
e7febdd c61d5a8 e7febdd c61d5a8 e7febdd c61d5a8 e7febdd c61d5a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
import PIL.Image
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
DESCRIPTION = "# Image Captioning with GIT"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "microsoft/git-large-coco"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
@spaces.GPU
def run(image: PIL.Image.Image) -> str:
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
input_image = gr.Image(type="pil")
run_button = gr.Button("Caption")
output = gr.Textbox(label="Result")
run_button.click(
fn=run,
inputs=input_image,
outputs=output,
api_name="caption",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|