Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,22 @@ import gradio as gr
|
|
6 |
import PIL.Image
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
from transformers import
|
10 |
|
11 |
-
DESCRIPTION = "# Image Captioning with
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
-
model_id = "
|
16 |
-
processor =
|
17 |
-
model =
|
18 |
|
19 |
|
20 |
@spaces.GPU
|
21 |
def run(image: PIL.Image.Image) -> str:
|
22 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
23 |
-
|
24 |
-
generated_caption = processor.
|
25 |
return generated_caption
|
26 |
|
27 |
|
|
|
6 |
import PIL.Image
|
7 |
import spaces
|
8 |
import torch
|
9 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
10 |
|
11 |
+
DESCRIPTION = "# Image Captioning with LongCap"
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
+
model_id = "unography/blip-long-cap"
|
16 |
+
processor = BlipProcessor.from_pretrained(model_id)
|
17 |
+
model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
|
18 |
|
19 |
|
20 |
@spaces.GPU
|
21 |
def run(image: PIL.Image.Image) -> str:
|
22 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
23 |
+
out = model.generate(pixel_values=pixel_values, max_length=300)
|
24 |
+
generated_caption = processor.decode(out[0], skip_special_tokens=True)
|
25 |
return generated_caption
|
26 |
|
27 |
|