import torch import gradio as gr from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel device = 'cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" # Replace ViTFeatureExtractor with ViTImageProcessor feature_extractor = ViTImageProcessor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) def predict(image, max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('', '').split('\n')[0] caption_ids = model.generate(image, max_length=max_length, num_beams=num_beams)[0] caption_text = clean_text(tokenizer.decode(caption_ids, skip_special_tokens=True)) return caption_text # Remove 'optional=True' from gr.Image input_image = gr.Image(label="Upload your Image", type='pil') output_text = gr.Textbox(label="Captions") examples = [f"example{i}.jpg" for i in range(1, 7)] description = "Image captioning application made using transformers" title = "Image Captioning 🖼️" article = "Created By : Shreyas Dixit" # Create the Gradio interface interface = gr.Interface( fn=predict, inputs=input_image, outputs=output_text, examples=examples, title=title, description=description, article=article, theme="grass" ) # Launch the interface interface.launch(share=True)