import torch import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration def generate_text(input_text): # Load pre-trained model and tokenizer model_name = 'kurry/t5_small_finetuned' model = T5ForConditionalGeneration.from_pretrained(model_name).to('cpu') tokenizer = T5Tokenizer.from_pretrained(model_name) # Generate summary inputs = tokenizer.encode("summarize: " + input_text, return_tensors="pt", truncation=True).to('cpu') outputs = model.generate(inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) iface = gr.Interface(fn=generate_text, inputs='text', outputs='text') iface.launch()