Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# -------------------------------------------------------- | |
# Main encoder/decoder blocks | |
# -------------------------------------------------------- | |
# References: | |
# timm | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py | |
import torch | |
import torch.nn as nn | |
from itertools import repeat | |
import collections.abc | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f'drop_prob={round(self.drop_prob,3):0.3f}' | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
bias = to_2tuple(bias) | |
drop_probs = to_2tuple(drop) | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs[0]) | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) | |
self.drop2 = nn.Dropout(drop_probs[1]) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.rope = rope | |
def forward(self, x, xpos): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3) | |
q, k, v = [qkv[:,:,i] for i in range(3)] | |
# q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) | |
if self.rope is not None: | |
q = self.rope(q, xpos) | |
k = self.rope(k, xpos) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, xpos): | |
x = x + self.drop_path(self.attn(self.norm1(x), xpos)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.projq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.projk = nn.Linear(dim, dim, bias=qkv_bias) | |
self.projv = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.rope = rope | |
def forward(self, query, key, value, qpos, kpos): | |
B, Nq, C = query.shape | |
Nk = key.shape[1] | |
Nv = value.shape[1] | |
q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) | |
k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) | |
v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3) | |
if self.rope is not None: | |
q = self.rope(q, qpos) | |
k = self.rope(k, kpos) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class DecoderBlock(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.norm3 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() | |
def forward(self, x, y, xpos, ypos): | |
x = x + self.drop_path(self.attn(self.norm1(x), xpos)) | |
y_ = self.norm_y(y) | |
x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) | |
x = x + self.drop_path(self.mlp(self.norm3(x))) | |
return x, y | |
# patch embedding | |
class PositionGetter(object): | |
""" return positions of patches """ | |
def __init__(self): | |
self.cache_positions = {} | |
def __call__(self, b, h, w, device): | |
if not (h,w) in self.cache_positions: | |
x = torch.arange(w, device=device) | |
y = torch.arange(h, device=device) | |
self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2) | |
pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone() | |
return pos | |
class PatchEmbed(nn.Module): | |
""" just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = flatten | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
self.position_getter = PositionGetter() | |
def forward(self, x): | |
B, C, H, W = x.shape | |
torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") | |
torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") | |
x = self.proj(x) | |
pos = self.position_getter(B, x.size(2), x.size(3), x.device) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x, pos | |
def _init_weights(self): | |
w = self.proj.weight.data | |
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |