kaz-llm-lb / app.py
hi-melnikov's picture
support downloading directly into model_answers
cd5319b
raw
history blame
4.6 kB
import logging
import os
import subprocess
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import Leaderboard, SelectColumns
from gradio_space_ci import enable_space_ci
from src.display.about import (
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
AutoEvalColumn,
fields,
)
from src.envs import API, H4_TOKEN, HF_HOME, REPO_ID, RESET_JUDGEMENT_ENV
from src.leaderboard.build_leaderboard import build_leadearboard_df, download_openbench
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
download_openbench()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def build_demo():
demo = gr.Blocks(title="Chatbot Arena Leaderboard", css=custom_css)
leaderboard_df = build_leadearboard_df()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
Leaderboard(
value=leaderboard_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[
AutoEvalColumn.model.name,
# AutoEvalColumn.fullname.name,
# AutoEvalColumn.license.name
],
)
# with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=1):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown("# ✨ Submit your model here!", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
def upload_file(file):
file_path = file.name.split("/")[-1] if "/" in file.name else file.name
logging.info("New submition: file saved to %s", file_path)
API.upload_file(
path_or_fileobj=file.name,
path_in_repo="model_answers/external/" + file_path,
repo_id="Vikhrmodels/openbench-eval",
repo_type="dataset",
)
os.environ[RESET_JUDGEMENT_ENV] = "1"
return file.name
if model_name_textbox:
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to Upload & Submit Answers", file_types=["*"], file_count="single"
)
upload_button.upload(upload_file, upload_button, file_output)
return demo
# print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py'))
# print(os.system('cd src/gen/ && python show_result.py --output'))
def update_board():
need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
if need_reset != "1":
return
os.environ[RESET_JUDGEMENT_ENV] = "0"
# gen_judgement_file = os.path.join(HF_HOME, "src/gen/gen_judgement.py")
# subprocess.run(["python3", gen_judgement_file], check=True)
show_result_file = os.path.join(HF_HOME, "src/gen/show_result.py")
subprocess.run(["python3", show_result_file, "--output"], check=True)
# update the gr item with leaderboard
# TODO
if __name__ == "__main__":
os.environ[RESET_JUDGEMENT_ENV] = "1"
scheduler = BackgroundScheduler()
scheduler.add_job(update_board, "interval", minutes=10)
scheduler.start()
demo_app = build_demo()
demo_app.launch(debug=True)