File size: 4,461 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os.path
import logging

import numpy as np
from datetime import datetime
from collections import OrderedDict

import torch

from utils import utils_logger
from utils import utils_model
from utils import utils_image as util
#import os
#os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"


'''
Spyder (Python 3.6)
PyTorch 1.1.0
Windows 10 or Linux

Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/KAIR
        https://github.com/cszn/DnCNN

@article{zhang2017beyond,
  title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={7},
  pages={3142--3155},
  year={2017},
  publisher={IEEE}
}

% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: cskaizhang@gmail.com; github: https://github.com/cszn)

by Kai Zhang (12/Dec./2019)
'''

"""
# --------------------------------------------
|--model_zoo          # model_zoo
   |--dncnn3          # model_name
|--testset            # testsets
   |--set12           # testset_name
   |--bsd68
|--results            # results
   |--set12_dncnn3    # result_name = testset_name + '_' + model_name
# --------------------------------------------
"""


def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    model_name = 'dncnn3'     # 'dncnn3'- can be used for blind Gaussian denoising, JPEG deblocking (quality factor 5-100) and super-resolution (x234)

    # important!
    testset_name = 'bsd68'    # test set, low-quality grayscale/color JPEG images
    n_channels = 1            # set 1 for grayscale image, set 3 for color image


    x8 = False                       # default: False, x8 to boost performance
    testsets = 'testsets'     # fixed
    results = 'results'       # fixed
    result_name = testset_name + '_' + model_name # fixed
    L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality grayscale/Y-channel JPEG images
    E_path = os.path.join(results, result_name)   # E_path, for Estimated images
    util.mkdir(E_path)

    model_pool = 'model_zoo'  # fixed
    model_path = os.path.join(model_pool, model_name+'.pth')
    logger_name = result_name
    utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
    logger = logging.getLogger(logger_name)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_dncnn import DnCNN as net
    model = net(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='R')
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------
        img_name, ext = os.path.splitext(os.path.basename(img))
        logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)
        if n_channels == 3:
            ycbcr = util.rgb2ycbcr(img_L, False)
            img_L = ycbcr[..., 0:1]
        img_L = util.single2tensor4(img_L)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------
        if not x8:
            img_E = model(img_L)
        else:
            img_E = utils_model.test_mode(model, img_L, mode=3)

        img_E = util.tensor2single(img_E)
        if n_channels == 3:
            ycbcr[..., 0] = img_E
            img_E = util.ycbcr2rgb(ycbcr)
        img_E = util.single2uint(img_E)

        # ------------------------------------
        # save results
        # ------------------------------------
        util.imsave(img_E, os.path.join(E_path, img_name+'.png'))


if __name__ == '__main__':

    main()