File size: 6,646 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os.path
import logging

import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat

import torch

from utils import utils_logger
from utils import utils_model
from utils import utils_image as util


'''
Spyder (Python 3.6)
PyTorch 1.1.0
Windows 10 or Linux

Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/KAIR
        https://github.com/cszn/IRCNN

@inproceedings{zhang2017learning,
title={Learning deep CNN denoiser prior for image restoration},
author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei},
booktitle={IEEE conference on computer vision and pattern recognition},
pages={3929--3938},
year={2017}
}

% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: cskaizhang@gmail.com; github: https://github.com/cszn)

by Kai Zhang (12/Dec./2019)
'''

"""
# --------------------------------------------
|--model_zoo          # model_zoo
   |--ircnn_gray      # model_name
   |--ircnn_color
|--testset            # testsets
   |--set12           # testset_name
   |--bsd68
   |--cbsd68
|--results            # results
   |--set12_ircnn_gray  # result_name = testset_name + '_' + model_name
   |--cbsd68_ircnn_color
# --------------------------------------------
"""


def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------
    noise_level_img = 50             # noise level for noisy image
    model_name = 'ircnn_gray'        # 'ircnn_gray' | 'ircnn_color'
    testset_name = 'set12'          # test set, 'bsd68' | 'set12'
    need_degradation = True          # default: True
    x8 = False                       # default: False, x8 to boost performance
    show_img = False                 # default: False
    current_idx = min(24, np.int(np.ceil(noise_level_img/2)-1)) # current_idx+1 th denoiser


    task_current = 'dn'       # fixed, 'dn' for denoising | 'sr' for super-resolution
    sf = 1                    # unused for denoising
    if 'color' in model_name:
        n_channels = 3        # fixed, 1 for grayscale image, 3 for color image 
    else:
        n_channels = 1        # fixed for grayscale image 

    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'     # fixed
    results = 'results'       # fixed
    result_name = testset_name + '_' + model_name     # fixed
    border = sf if task_current == 'sr' else 0        # shave boader to calculate PSNR and SSIM
    model_path = os.path.join(model_pool, model_name+'.pth')

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------
    L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images
    H_path = L_path                               # H_path, for High-quality images
    E_path = os.path.join(results, result_name)   # E_path, for Estimated images
    util.mkdir(E_path)

    if H_path == L_path:
        need_degradation = True
    logger_name = result_name
    utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
    logger = logging.getLogger(logger_name)

    need_H = True if H_path is not None else False
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------
    model25 = torch.load(model_path)
    from models.network_dncnn import IRCNN as net
    model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
    model.load_state_dict(model25[str(current_idx)], strict=True)
    model.eval()
    for _, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []

    logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)
    H_paths = util.get_image_paths(H_path) if need_H else None

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------
        img_name, ext = os.path.splitext(os.path.basename(img))
        # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)

        if need_degradation:  # degradation process
            np.random.seed(seed=0)  # for reproducibility
            img_L += np.random.normal(0, noise_level_img/255., img_L.shape)

        util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format(noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------
        if not x8:
            img_E = model(img_L)
        else:
            img_E = utils_model.test_mode(model, img_L, mode=3)

        img_E = util.tensor2uint(img_E)

        if need_H:

            # --------------------------------
            # (3) img_H
            # --------------------------------
            img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
            img_H = img_H.squeeze()

            # --------------------------------
            # PSNR and SSIM
            # --------------------------------
            psnr = util.calculate_psnr(img_E, img_H, border=border)
            ssim = util.calculate_ssim(img_E, img_H, border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim))
            util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None

        # ------------------------------------
        # save results
        # ------------------------------------
        util.imsave(img_E, os.path.join(E_path, img_name+ext))

    if need_H:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        logger.info('Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, ave_psnr, ave_ssim))

if __name__ == '__main__':

    main()