Spaces:
Running
Running
File size: 9,288 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os.path
import cv2
import logging
import time
import os
import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat
#import hdf5storage
from scipy import ndimage
from scipy.signal import convolve2d
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_sisr as sr
from utils import utils_image as util
from models.network_usrnet import USRNet as net
'''
Spyder (Python 3.6)
PyTorch 1.4.0
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/USRNet
https://github.com/cszn/KAIR
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: cskaizhang@gmail.com)
by Kai Zhang (12/March/2020)
'''
"""
# --------------------------------------------
testing code of USRNet for the Table 1 in the paper
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={0--0},
year={2020}
}
# --------------------------------------------
|--model_zoo # model_zoo
|--usrgan # model_name, optimized for perceptual quality
|--usrnet # model_name, optimized for PSNR
|--usrgan_tiny # model_name, tiny model optimized for perceptual quality
|--usrnet_tiny # model_name, tiny model optimized for PSNR
|--testsets # testsets
|--set5 # testset_name
|--set14
|--urban100
|--bsd100
|--srbsd68 # already cropped
|--results # results
|--srbsd68_usrnet # result_name = testset_name + '_' + model_name
|--srbsd68_usrgan
|--srbsd68_usrnet_tiny
|--srbsd68_usrgan_tiny
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
testset_name = 'set5' # test set, 'set5' | 'srbsd68'
test_sf = [4] if 'gan' in model_name else [2, 3, 4] # scale factor, from {1,2,3,4}
show_img = False # default: False
save_L = True # save LR image
save_E = True # save estimated image
save_LEH = False # save zoomed LR, E and H images
# ----------------------------------------
# load testing kernels
# ----------------------------------------
# kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels']
kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
noise_level_img = 0 # fixed: 0, noise level for LR image
noise_level_model = noise_level_img # fixed, noise level of model, default 0
result_name = testset_name + '_' + model_name
model_path = os.path.join(model_pool, model_name+'.pth')
# ----------------------------------------
# L_path = H_path, E_path, logger
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path and H_path, fixed, for Low-quality images
E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images
util.mkdir(E_path)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if 'tiny' in model_name:
model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
else:
model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for key, v in model.named_parameters():
v.requires_grad = False
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
logger.info('Params number: {}'.format(number_parameters))
logger.info('Model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
# --------------------------------
# read images
# --------------------------------
test_results_ave = OrderedDict()
test_results_ave['psnr_sf_k'] = []
for sf in test_sf:
for k_index in range(kernels.shape[1]):
test_results = OrderedDict()
test_results['psnr'] = []
kernel = kernels[0, k_index].astype(np.float64)
## other kernels
# kernel = utils_deblur.blurkernel_synthesis(h=25) # motion kernel
# kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel
# kernel = sr.shift_pixel(kernel, sf) # pixel shift; optional
# kernel /= np.sum(kernel)
util.surf(kernel) if show_img else None
idx = 0
for img in L_paths:
# --------------------------------
# (1) classical degradation, img_L
# --------------------------------
idx += 1
img_name, ext = os.path.splitext(os.path.basename(img))
img_H = util.imread_uint(img, n_channels=n_channels) # HR image, int8
img_H = util.modcrop(img_H, np.lcm(sf,8)) # modcrop
# generate degraded LR image
img_L = ndimage.filters.convolve(img_H, kernel[..., np.newaxis], mode='wrap') # blur
img_L = sr.downsample_np(img_L, sf, center=False) # downsample, standard s-fold downsampler
img_L = util.uint2single(img_L) # uint2single
np.random.seed(seed=0) # for reproducibility
img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN
util.imshow(util.single2uint(img_L)) if show_img else None
x = util.single2tensor4(img_L)
k = util.single2tensor4(kernel[..., np.newaxis])
sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
[x, k, sigma] = [el.to(device) for el in [x, k, sigma]]
# --------------------------------
# (2) inference
# --------------------------------
x = model(x, k, sf, sigma)
# --------------------------------
# (3) img_E
# --------------------------------
img_E = util.tensor2uint(x)
if save_E:
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_'+model_name+'.png'))
# --------------------------------
# (4) img_LEH
# --------------------------------
img_L = util.single2uint(img_L)
if save_LEH:
k_v = kernel/np.max(kernel)*1.2
k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3]))
k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v
img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L
util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None
util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LEH.png'))
if save_L:
util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LR.png'))
psnr = util.calculate_psnr(img_E, img_H, border=sf**2) # change with your own border
test_results['psnr'].append(psnr)
logger.info('{:->4d}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB'.format(idx, img_name+ext, sf, k_index, psnr))
ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr'])
logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({}): {:.2f} dB'.format(testset_name, sf, k_index+1, noise_level_model, ave_psnr_k))
test_results_ave['psnr_sf_k'].append(ave_psnr_k)
logger.info(test_results_ave['psnr_sf_k'])
if __name__ == '__main__':
main()
|