Spaces:
Running
Running
File size: 14,111 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import sys
import os.path
import math
import argparse
import time
import random
import cv2
import numpy as np
from collections import OrderedDict
import logging
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from utils import utils_logger
from utils import utils_image as util
from utils import utils_option as option
from utils.utils_dist import get_dist_info, init_dist
from data.select_dataset import define_Dataset
from models.select_model import define_Model
'''
# --------------------------------------------
# training code for VRT
# --------------------------------------------
'''
def main(json_path='options/vrt/001_train_vrt_videosr_bi_reds_6frames.json'):
'''
# ----------------------------------------
# Step--1 (prepare opt)
# ----------------------------------------
'''
parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default=json_path, help='Path to option JSON file.')
parser.add_argument('--launcher', default='pytorch', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--dist', default=False)
opt = option.parse(parser.parse_args().opt, is_train=True)
opt['dist'] = parser.parse_args().dist
# ----------------------------------------
# distributed settings
# ----------------------------------------
if opt['dist']:
init_dist('pytorch')
opt['rank'], opt['world_size'] = get_dist_info()
if opt['rank'] == 0:
util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key))
# ----------------------------------------
# update opt
# ----------------------------------------
# -->-->-->-->-->-->-->-->-->-->-->-->-->-
init_iter_G, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G',
pretrained_path=opt['path']['pretrained_netG'])
init_iter_E, init_path_E = option.find_last_checkpoint(opt['path']['models'], net_type='E',
pretrained_path=opt['path']['pretrained_netE'])
opt['path']['pretrained_netG'] = init_path_G
opt['path']['pretrained_netE'] = init_path_E
init_iter_optimizerG, init_path_optimizerG = option.find_last_checkpoint(opt['path']['models'],
net_type='optimizerG')
opt['path']['pretrained_optimizerG'] = init_path_optimizerG
current_step = max(init_iter_G, init_iter_E, init_iter_optimizerG)
# --<--<--<--<--<--<--<--<--<--<--<--<--<-
# ----------------------------------------
# save opt to a '../option.json' file
# ----------------------------------------
if opt['rank'] == 0:
option.save(opt)
# ----------------------------------------
# return None for missing key
# ----------------------------------------
opt = option.dict_to_nonedict(opt)
# ----------------------------------------
# configure logger
# ----------------------------------------
if opt['rank'] == 0:
logger_name = 'train'
utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log'))
logger = logging.getLogger(logger_name)
logger.info(option.dict2str(opt))
# ----------------------------------------
# seed
# ----------------------------------------
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
'''
# ----------------------------------------
# Step--2 (creat dataloader)
# ----------------------------------------
'''
# ----------------------------------------
# 1) create_dataset
# 2) creat_dataloader for train and test
# ----------------------------------------
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = define_Dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size']))
if opt['rank'] == 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size))
if opt['dist']:
train_sampler = DistributedSampler(train_set, shuffle=dataset_opt['dataloader_shuffle'],
drop_last=True, seed=seed)
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size']//opt['num_gpu'],
shuffle=False,
num_workers=dataset_opt['dataloader_num_workers']//opt['num_gpu'],
drop_last=True,
pin_memory=True,
sampler=train_sampler)
else:
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size'],
shuffle=dataset_opt['dataloader_shuffle'],
num_workers=dataset_opt['dataloader_num_workers'],
drop_last=True,
pin_memory=True)
elif phase == 'test':
test_set = define_Dataset(dataset_opt)
test_loader = DataLoader(test_set, batch_size=1,
shuffle=False, num_workers=1,
drop_last=False, pin_memory=True)
else:
raise NotImplementedError("Phase [%s] is not recognized." % phase)
'''
# ----------------------------------------
# Step--3 (initialize model)
# ----------------------------------------
'''
model = define_Model(opt)
model.init_train()
if opt['rank'] == 0:
logger.info(model.info_network())
logger.info(model.info_params())
'''
# ----------------------------------------
# Step--4 (main training)
# ----------------------------------------
'''
for epoch in range(1000000): # keep running
for i, train_data in enumerate(train_loader):
current_step += 1
# -------------------------------
# 1) update learning rate
# -------------------------------
model.update_learning_rate(current_step)
# -------------------------------
# 2) feed patch pairs
# -------------------------------
model.feed_data(train_data)
# -------------------------------
# 3) optimize parameters
# -------------------------------
model.optimize_parameters(current_step)
# -------------------------------
# 4) training information
# -------------------------------
if current_step % opt['train']['checkpoint_print'] == 0 and opt['rank'] == 0:
logs = model.current_log() # such as loss
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step,
model.current_learning_rate())
for k, v in logs.items(): # merge log information into message
message += '{:s}: {:.3e} '.format(k, v)
logger.info(message)
# -------------------------------
# 5) save model
# -------------------------------
if current_step % opt['train']['checkpoint_save'] == 0 and opt['rank'] == 0:
logger.info('Saving the model.')
model.save(current_step)
if opt['use_static_graph'] and (current_step == opt['train']['fix_iter'] - 1):
current_step += 1
model.update_learning_rate(current_step)
model.save(current_step)
current_step -= 1
logger.info('Saving models ahead of time when changing the computation graph with use_static_graph=True'
' (we need it due to a bug with use_checkpoint=True in distributed training). The training '
'will be terminated by PyTorch in the next iteration. Just resume training with the same '
'.json config file.')
# -------------------------------
# 6) testing
# -------------------------------
if current_step % opt['train']['checkpoint_test'] == 0 and opt['rank'] == 0:
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
for idx, test_data in enumerate(test_loader):
model.feed_data(test_data)
model.test()
visuals = model.current_visuals()
output = visuals['E']
gt = visuals['H'] if 'H' in visuals else None
folder = test_data['folder']
test_results_folder = OrderedDict()
test_results_folder['psnr'] = []
test_results_folder['ssim'] = []
test_results_folder['psnr_y'] = []
test_results_folder['ssim_y'] = []
for i in range(output.shape[0]):
# -----------------------
# save estimated image E
# -----------------------
img = output[i, ...].clamp_(0, 1).numpy()
if img.ndim == 3:
img = np.transpose(img[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
img = (img * 255.0).round().astype(np.uint8) # float32 to uint8
if opt['val']['save_img']:
save_dir = opt['path']['images']
util.mkdir(save_dir)
seq_ = os.path.basename(test_data['lq_path'][i][0]).split('.')[0]
os.makedirs(f'{save_dir}/{folder[0]}', exist_ok=True)
cv2.imwrite(f'{save_dir}/{folder[0]}/{seq_}_{current_step:d}.png', img)
# -----------------------
# calculate PSNR
# -----------------------
img_gt = gt[i, ...].clamp_(0, 1).numpy()
if img_gt.ndim == 3:
img_gt = np.transpose(img_gt[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
img_gt = np.squeeze(img_gt)
test_results_folder['psnr'].append(util.calculate_psnr(img, img_gt, border=0))
test_results_folder['ssim'].append(util.calculate_ssim(img, img_gt, border=0))
if img_gt.ndim == 3: # RGB image
img = util.bgr2ycbcr(img.astype(np.float32) / 255.) * 255.
img_gt = util.bgr2ycbcr(img_gt.astype(np.float32) / 255.) * 255.
test_results_folder['psnr_y'].append(util.calculate_psnr(img, img_gt, border=0))
test_results_folder['ssim_y'].append(util.calculate_ssim(img, img_gt, border=0))
else:
test_results_folder['psnr_y'] = test_results_folder['psnr']
test_results_folder['ssim_y'] = test_results_folder['ssim']
psnr = sum(test_results_folder['psnr']) / len(test_results_folder['psnr'])
ssim = sum(test_results_folder['ssim']) / len(test_results_folder['ssim'])
psnr_y = sum(test_results_folder['psnr_y']) / len(test_results_folder['psnr_y'])
ssim_y = sum(test_results_folder['ssim_y']) / len(test_results_folder['ssim_y'])
if gt is not None:
logger.info('Testing {:20s} ({:2d}/{}) - PSNR: {:.2f} dB; SSIM: {:.4f}; '
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}'.
format(folder[0], idx, len(test_loader), psnr, ssim, psnr_y, ssim_y))
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
else:
logger.info('Testing {:20s} ({:2d}/{})'.format(folder[0], idx, len(test_loader)))
# summarize psnr/ssim
if gt is not None:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
logger.info('<epoch:{:3d}, iter:{:8,d} Average PSNR: {:.2f} dB; SSIM: {:.4f}; '
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}'.format(
epoch, current_step, ave_psnr, ave_ssim, ave_psnr_y, ave_ssim_y))
if current_step > opt['train']['total_iter']:
logger.info('Finish training.')
model.save(current_step)
sys.exit()
if __name__ == '__main__':
main()
|