Spaces:
Running
Running
import argparse | |
import os | |
import requests | |
import re | |
""" | |
How to use: | |
download all the models: | |
python main_download_pretrained_models.py --models "all" --model_dir "model_zoo" | |
download DnCNN models: | |
python main_download_pretrained_models.py --models "DnCNN" --model_dir "model_zoo" | |
download SRMD models: | |
python main_download_pretrained_models.py --models "SRMD" --model_dir "model_zoo" | |
download BSRGAN models: | |
python main_download_pretrained_models.py --models "BSRGAN" --model_dir "model_zoo" | |
download FFDNet models: | |
python main_download_pretrained_models.py --models "FFDNet" --model_dir "model_zoo" | |
download DPSR models: | |
python main_download_pretrained_models.py --models "DPSR" --model_dir "model_zoo" | |
download SwinIR models: | |
python main_download_pretrained_models.py --models "SwinIR" --model_dir "model_zoo" | |
download VRT models: | |
python main_download_pretrained_models.py --models "VRT" --model_dir "model_zoo" | |
download other models: | |
python main_download_pretrained_models.py --models "others" --model_dir "model_zoo" | |
------------------------------------------------------------------ | |
download 'dncnn_15.pth' and 'dncnn_50.pth' | |
python main_download_pretrained_models.py --models "dncnn_15.pth dncnn_50.pth" --model_dir "model_zoo" | |
------------------------------------------------------------------ | |
download DnCNN models and 'BSRGAN.pth' | |
python main_download_pretrained_models.py --models "DnCNN BSRGAN.pth" --model_dir "model_zoo" | |
""" | |
def download_pretrained_model(model_dir='model_zoo', model_name='dncnn3.pth'): | |
if os.path.exists(os.path.join(model_dir, model_name)): | |
print(f'already exists, skip downloading [{model_name}]') | |
else: | |
os.makedirs(model_dir, exist_ok=True) | |
if 'SwinIR' in model_name: | |
url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(model_name) | |
elif 'VRT' in model_name: | |
url = 'https://github.com/JingyunLiang/VRT/releases/download/v0.0/{}'.format(model_name) | |
else: | |
url = 'https://github.com/cszn/KAIR/releases/download/v1.0/{}'.format(model_name) | |
r = requests.get(url, allow_redirects=True) | |
print(f'downloading [{model_dir}/{model_name}] ...') | |
open(os.path.join(model_dir, model_name), 'wb').write(r.content) | |
print('done!') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--models', | |
type=lambda s: re.split(' |, ', s), | |
default = "dncnn3.pth", | |
help='comma or space delimited list of characters, e.g., "DnCNN", "DnCNN BSRGAN.pth", "dncnn_15.pth dncnn_50.pth"') | |
parser.add_argument('--model_dir', type=str, default='model_zoo', help='path of model_zoo') | |
args = parser.parse_args() | |
print(f'trying to download {args.models}') | |
method_model_zoo = {'DnCNN': ['dncnn_15.pth', 'dncnn_25.pth', 'dncnn_50.pth', 'dncnn3.pth', 'dncnn_color_blind.pth', 'dncnn_gray_blind.pth'], | |
'SRMD': ['srmdnf_x2.pth', 'srmdnf_x3.pth', 'srmdnf_x4.pth', 'srmd_x2.pth', 'srmd_x3.pth', 'srmd_x4.pth'], | |
'DPSR': ['dpsr_x2.pth', 'dpsr_x3.pth', 'dpsr_x4.pth', 'dpsr_x4_gan.pth'], | |
'FFDNet': ['ffdnet_color.pth', 'ffdnet_gray.pth', 'ffdnet_color_clip.pth', 'ffdnet_gray_clip.pth'], | |
'USRNet': ['usrgan.pth', 'usrgan_tiny.pth', 'usrnet.pth', 'usrnet_tiny.pth'], | |
'DPIR': ['drunet_gray.pth', 'drunet_color.pth', 'drunet_deblocking_color.pth', 'drunet_deblocking_grayscale.pth'], | |
'BSRGAN': ['BSRGAN.pth', 'BSRNet.pth', 'BSRGANx2.pth'], | |
'IRCNN': ['ircnn_color.pth', 'ircnn_gray.pth'], | |
'SwinIR': ['001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth', | |
'001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth', | |
'001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth', | |
'001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth', | |
'002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth', | |
'002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth', '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth', | |
'003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_PSNR.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth', | |
'004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth', | |
'005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth', | |
'005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth', | |
'006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth', | |
'006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth'], | |
'VRT': ['001_VRT_videosr_bi_REDS_6frames.pth', '002_VRT_videosr_bi_REDS_16frames.pth', | |
'003_VRT_videosr_bi_Vimeo_7frames.pth', '004_VRT_videosr_bd_Vimeo_7frames.pth', | |
'005_VRT_videodeblurring_DVD.pth', '006_VRT_videodeblurring_GoPro.pth', | |
'007_VRT_videodeblurring_REDS.pth', '008_VRT_videodenoising_DAVIS.pth'], | |
'others': ['msrresnet_x4_psnr.pth', 'msrresnet_x4_gan.pth', 'imdn_x4.pth', 'RRDB.pth', 'ESRGAN.pth', | |
'FSSR_DPED.pth', 'FSSR_JPEG.pth', 'RealSR_DPED.pth', 'RealSR_JPEG.pth'] | |
} | |
method_zoo = list(method_model_zoo.keys()) | |
model_zoo = [] | |
for b in list(method_model_zoo.values()): | |
model_zoo += b | |
if 'all' in args.models: | |
for method in method_zoo: | |
for model_name in method_model_zoo[method]: | |
download_pretrained_model(args.model_dir, model_name) | |
else: | |
for method_model in args.models: | |
if method_model in method_zoo: # method, need for loop | |
for model_name in method_model_zoo[method_model]: | |
if 'SwinIR' in model_name: | |
download_pretrained_model(os.path.join(args.model_dir, 'swinir'), model_name) | |
elif 'VRT' in model_name: | |
download_pretrained_model(os.path.join(args.model_dir, 'vrt'), model_name) | |
else: | |
download_pretrained_model(args.model_dir, model_name) | |
elif method_model in model_zoo: # model, do not need for loop | |
if 'SwinIR' in method_model: | |
download_pretrained_model(os.path.join(args.model_dir, 'swinir'), method_model) | |
elif 'VRT' in method_model: | |
download_pretrained_model(os.path.join(args.model_dir, 'vrt'), method_model) | |
else: | |
download_pretrained_model(args.model_dir, method_model) | |
else: | |
print(f'Do not find {method_model} from the pre-trained model zoo!') | |