LambdaSuperRes / KAIR /main_train_usrnet.py
cooperll
LambdaSuperRes initial commit
2514fb4
raw
history blame
8.1 kB
import os.path
import math
import argparse
import time
import random
import numpy as np
from collections import OrderedDict
import logging
from torch.utils.data import DataLoader
import torch
from utils import utils_logger
from utils import utils_image as util
from utils import utils_option as option
from utils import utils_sisr as sisr
from data.select_dataset import define_Dataset
from models.select_model import define_Model
'''
# --------------------------------------------
# training code for USRNet
# --------------------------------------------
# Kai Zhang (cskaizhang@gmail.com)
# github: https://github.com/cszn/KAIR
# https://github.com/cszn/USRNet
#
# Reference:
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3217--3226},
year={2020}
}
# --------------------------------------------
'''
def main(json_path='options/train_usrnet.json'):
'''
# ----------------------------------------
# Step--1 (prepare opt)
# ----------------------------------------
'''
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.')
opt = option.parse(parser.parse_args().opt, is_train=True)
util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key))
# ----------------------------------------
# update opt
# ----------------------------------------
# -->-->-->-->-->-->-->-->-->-->-->-->-->-
init_iter, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G')
opt['path']['pretrained_netG'] = init_path_G
current_step = init_iter
border = opt['scale']
# --<--<--<--<--<--<--<--<--<--<--<--<--<-
# ----------------------------------------
# save opt to a '../option.json' file
# ----------------------------------------
option.save(opt)
# ----------------------------------------
# return None for missing key
# ----------------------------------------
opt = option.dict_to_nonedict(opt)
# ----------------------------------------
# configure logger
# ----------------------------------------
logger_name = 'train'
utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log'))
logger = logging.getLogger(logger_name)
logger.info(option.dict2str(opt))
# ----------------------------------------
# seed
# ----------------------------------------
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
logger.info('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
'''
# ----------------------------------------
# Step--2 (creat dataloader)
# ----------------------------------------
'''
# ----------------------------------------
# 1) create_dataset
# 2) creat_dataloader for train and test
# ----------------------------------------
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = define_Dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size']))
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size))
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size'],
shuffle=dataset_opt['dataloader_shuffle'],
num_workers=dataset_opt['dataloader_num_workers'],
drop_last=True,
pin_memory=True)
elif phase == 'test':
test_set = define_Dataset(dataset_opt)
test_loader = DataLoader(test_set, batch_size=1,
shuffle=False, num_workers=1,
drop_last=False, pin_memory=True)
else:
raise NotImplementedError("Phase [%s] is not recognized." % phase)
'''
# ----------------------------------------
# Step--3 (initialize model)
# ----------------------------------------
'''
model = define_Model(opt)
logger.info(model.info_network())
model.init_train()
logger.info(model.info_params())
'''
# ----------------------------------------
# Step--4 (main training)
# ----------------------------------------
'''
for epoch in range(1000000): # keep running
for i, train_data in enumerate(train_loader):
current_step += 1
# -------------------------------
# 1) update learning rate
# -------------------------------
model.update_learning_rate(current_step)
# -------------------------------
# 2) feed patch pairs
# -------------------------------
model.feed_data(train_data)
# -------------------------------
# 3) optimize parameters
# -------------------------------
model.optimize_parameters(current_step)
# -------------------------------
# 4) training information
# -------------------------------
if current_step % opt['train']['checkpoint_print'] == 0:
logs = model.current_log() # such as loss
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step, model.current_learning_rate())
for k, v in logs.items(): # merge log information into message
message += '{:s}: {:.3e} '.format(k, v)
logger.info(message)
# -------------------------------
# 5) save model
# -------------------------------
if current_step % opt['train']['checkpoint_save'] == 0:
logger.info('Saving the model.')
model.save(current_step)
# -------------------------------
# 6) testing
# -------------------------------
if current_step % opt['train']['checkpoint_test'] == 0:
avg_psnr = 0.0
idx = 0
for test_data in test_loader:
idx += 1
image_name_ext = os.path.basename(test_data['L_path'][0])
img_name, ext = os.path.splitext(image_name_ext)
img_dir = os.path.join(opt['path']['images'], img_name)
util.mkdir(img_dir)
model.feed_data(test_data)
model.test()
visuals = model.current_visuals()
E_img = util.tensor2uint(visuals['E'])
H_img = util.tensor2uint(visuals['H'])
# -----------------------
# save estimated image E
# -----------------------
save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step))
util.imsave(E_img, save_img_path)
# -----------------------
# calculate PSNR
# -----------------------
current_psnr = util.calculate_psnr(E_img, H_img, border=border)
logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr))
avg_psnr += current_psnr
avg_psnr = avg_psnr / idx
# testing log
logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr))
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()