LambdaSuperRes / KAIR /options /swinir /train_swinir_car_jpeg.json
cooperll
LambdaSuperRes initial commit
2514fb4
raw
history blame
3.79 kB
{
"task": "swinir_car_jpeg_40" // JPEG compression artifact reduction for quality factor 10/20/30/40. root/task/images-models-options
, "model": "plain" // "plain" | "plain2" if two inputs
, "gpu_ids": [0,1,2,3,4,5,6,7]
, "dist": true
, "is_color": false // color or grayscale
, "path": {
"root": "dejpeg" // "denoising" | "superresolution" | "dejpeg"
, "pretrained_netG": null // path of pretrained model. We fine-tune quality=10/20/30 models from quality=40 model, so that `G_optimizer_lr` and `G_scheduler_milestones` can be halved to save time.
, "pretrained_netE": null // path of pretrained model
}
, "datasets": {
"train": {
"name": "train_dataset" // just name
, "dataset_type": "jpeg" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg"
, "dataroot_H": "trainsets/trainH"// path of H training dataset. DIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images) in SwinIR
, "dataroot_L": null // path of L training dataset
, "H_size": 126 // patch_size
, "quality_factor": 40 // 10 | 20 | 30 | 40.
, "quality_factor_test": 40 //
, "is_color": false //
, "dataloader_shuffle": true
, "dataloader_num_workers": 16
, "dataloader_batch_size": 8 // batch size 1 | 16 | 32 | 48 | 64 | 128. Total batch size =1x8=8 in SwinIR
}
, "test": {
"name": "test_dataset" // just name
, "dataset_type": "jpeg" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg"
, "dataroot_H": "testsets/LIVE1" // path of H testing dataset
, "dataroot_L": null // path of L testing dataset
, "quality_factor": 40 // 10 | 20 | 30 | 40.
, "quality_factor_test": 40 //
, "is_color": false //
}
}
, "netG": {
"net_type": "swinir"
, "upscale": 1
, "in_chans": 1
, "img_size": 126
, "window_size": 7 // 7 works better than 8, maybe because jpeg encoding uses 8x8 patches
, "img_range": 255.0 // image_range=255.0 is slightly better
, "depths": [6, 6, 6, 6, 6, 6]
, "embed_dim": 180
, "num_heads": [6, 6, 6, 6, 6, 6]
, "mlp_ratio": 2
, "upsampler": null // "pixelshuffle" | "pixelshuffledirect" | "nearest+conv" | null
, "resi_connection": "1conv" // "1conv" | "3conv"
, "init_type": "default"
}
, "train": {
"G_lossfn_type": "charbonnier" // "l1" | "l2sum" | "l2" | "ssim" | "charbonnier" preferred
, "G_lossfn_weight": 1.0 // default
, "G_charbonnier_eps": 1e-9
, "E_decay": 0.999 // Exponential Moving Average for netG: set 0 to disable; default setting 0.999
, "G_optimizer_type": "adam" // fixed, adam is enough
, "G_optimizer_lr": 2e-4 // learning rate
, "G_optimizer_wd": 0 // weight decay, default 0
, "G_optimizer_clipgrad": null // unused
, "G_optimizer_reuse": true //
, "G_scheduler_type": "MultiStepLR" // "MultiStepLR" is enough
, "G_scheduler_milestones": [800000, 1200000, 1400000, 1500000, 1600000]
, "G_scheduler_gamma": 0.5
, "G_regularizer_orthstep": null // unused
, "G_regularizer_clipstep": null // unused
, "G_param_strict": true
, "E_param_strict": true
, "checkpoint_test": 5000 // for testing
, "checkpoint_save": 5000 // for saving model
, "checkpoint_print": 200 // for print
}
}